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For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a
balance between the forward thrust from swimming movements and drag on the body. Prior approaches
have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels,
where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this
separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a
vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform,
rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has
practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role
of the mechanics of movement in the evolutionary emergence of morphological features relating to
locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the
observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an
important model system in sensory neurobiology. We also show how drag-thrust separation leads to models
that can predict the swimming velocity of an organism or a robotic vehicle.

T
he hydrodynamics of aquatic locomotion has importance across multiple domains, from basic biology to the
engineering of highly maneuverable underwater vehicles. Within biology, beyond the interest in aquatic
locomotion, there is extensive use of several aquatic model systems within neuroscience such as lamprey for

research into spinal cord function1, zebrafish for developmental neuroscience2, and weakly electric fish for the
neurobiology of sensory processing (reviews: refs. 3, 4). Within engineering, the maneuverability and efficiency of
fish is inspiring new styles of propulsion and maneuvering in underwater vehicles5–7. The implementation of
engineered solutions will depend on the resolution of open issues in hydrodynamics of aquatic locomotion.
Finally, an understanding of the hydrodynamics of aquatic locomotion is critical for insight into the evolution of
fish8 and their land-based descendants.

While the hydrodynamics of swimming organisms have been studied actively for almost a century, there are
key questions that remain unresolved. This work focuses on one such unresolved issue that pertains to the
mechanisms of drag and thrust generation. The decomposition of the total force on a swimming organism into
drag and thrust is desirable because it can fundamentally reveal how an organism produces forward push to
balance the resistance to motion from the surrounding fluid. It can also lead to simple quantitative models
to predict swimming velocity of organisms or artificial underwater vehicles based on their kinematics.

If we consider a boat with a propeller, the decomposition of thrust and drag is straightforward since all of the
thrust is coming from the propeller, and most of the drag is coming from the hull. However, for swimmers that use
undulatory motions for propulsion (Fig. 1), drag-thrust decomposition is not straightforward. For example, in the
case of anguilliform swimmers such as eels, where the entire body undulates, there are no distinct portions of the
body that alone produce thrust or cause drag. In other groups of fishes there are undulatory elongated fins along
the ventral midline (Fig. 2a, knifefish such as those of the Gymnotiformes and Notopteridae), dorsal midline
(Gymarchus nilotics, the oarfish Regalecus glesne), along ventral and dorsal midlines (triggerfish of the Balastidae),
and along the lateral margins of the body (certain rays and skates of the Batoidea, cuttlefish). For these animals,
undulating fins may be regarded as the primary thrust generators and the relatively straight body may be regarded
as the primary source of drag. However, this apparent decomposition of drag and thrust regions should not be
considered to imply that an undulatory fin itself has no drag. This is clearly not the case because a hypothetical
undulatory ribbon fin that is not attached to a body will undergo steady swimming. The drag of the ribbon fin and
the thrust it generates will be in balance in that case.
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Arguably the most widely cited analysis of drag-thrust decomposi-
tion is due to Lighthill9. He considered the force generated from
undulatory motion by elongated animals such as eels10, and later,
with Blake, considered forces on the ribbon fins of balistiform and
gymnotiform swimmers11. The analysis was based on a ‘‘reactive’’
theory of propulsion that was proposed for high Reynolds number
swimming. Lighthill considered a decomposition of the force on the
body into resistive and reactive components that lead to drag and
thrust, respectively. He defined the force on a section of the body as
resistive if it depends, linearly or non-linearly, on the instantaneous
velocity of that section relative to the surrounding fluid. Reactive
forces were defined as those due to inertia of the surrounding fluid
(the ‘‘added mass’’ effect), proportional to the rate of change of the
relative velocity between the fluid and surface of the swimming body.
Lighthill then provided expressions for the reactive thrust force using
a simplified potential flow theory10,11. No model for drag was
developed.

To address this long-standing issue, we define three fundamental
principles for the decomposition of forces arising from undulatory
swimming into drag and thrust. First, (D1) the body movement
(kinematics) creating drag needs to be separated from the body
movement creating thrust, such that the sum of these two move-
ments results in the originally observed swimming motion of the
animal. Second, (D2) these decomposed movements should be such
that the surface of the body will move in a continuous fashion so that
the kinematics can be realized in experiments or simulations. Third,
(D3) the sum of the force due to the drag–inducing movement with
the force due to the thrust–inducing movement needs to equal the
force estimated from the original (undecomposed) movement of the
fish. Requirement (D2) will enable three independent experiments to
estimate forces and develop predictive models for swimming: i) the
force based on the undecomposed motion; ii) the force resulting
purely from the drag kinematics, defined as drag; iii) the force result-
ing purely from the thrust kinematics, defined as thrust.

In this work we propose a new way to decompose drag and thrust
that satisfies conditions D1 to D3. Using an idealized elongated anal
fin (hereafter ribbon fin) of weakly electric fish (Fig. 2a) but with no
body as a model system, we present results from simulations and
experiments supporting our approach. The scope of applicability of
the decomposition will be further demonstrated through simulations

of the eel Anguilla rostrata, the larval zebrafish Danio rerio, the black
ghost knifefish Apteronotus albifrons, and the mackerel Scomber
scombrus. These examples show where the decomposition is valid
(which includes the cases shown in Fig. 1), and where it becomes
invalid. For a case where it is valid—swimming with elongated fins
such as in the knifefish—we go on to show that drag–thrust decom-
position can be used to predict an important morphological feature:
the height of the fin that minimizes the cost of transport, a measure of
the energy needed for locomotion per unit distance. Our predictions
agree well with the measured height of the fin in a sample of 13
species in a representative family of knifefishes, the Apteronotidae.

Results
Kinematic decomposition. To demonstrate drag–thrust decompo-
sition, we consider the same model problem considered by Lighthill
and Blake11 and analyze the forces on the elongated median fin
(hereafter ‘‘ribbon fin’’) of a gymnotiform swimmer (Fig. 2a). We
numerically simulate a translating ribbon fin with a traveling
wave (Fig. 2b) along it. The traveling wave on the ribbon fin was
described by the angular position of any point on the ribbon fin

h x,tð Þ~hmax sin 2p
x
l

{ft
� �

, where hmax is the maximum angle of

excursion, x is the coordinate in the axial direction, f is the frequency,
and l is the wavelength of undulations. In the simulations there is no
attached body. The fin morphology is shown in Fig. 2c. The sign
convention for velocity and force is described in the Methods. The
force on the ribbon fin from the fluid is numerically computed for
different values of the translational velocity U of the fin and the
traveling wave velocity Uw (given by fl). The wave motion is
caused by the lateral oscillatory velocity field Vw on the fin surface.
Vw, and by consequence Uw, were varied by changing the frequency
f of the traveling wave. The fin had two undulations along its
length12,13.

To understand our proposed kinematic decomposition, consider a
generic waveform of constant amplitude that has a lateral oscillatory
velocity Vw and a corresponding traveling wave velocity Uw. Let U be
the forward velocity of the fin as a whole. This is the undecomposed
kinematics (Fig. 3 left bottom panel) which is decomposed into two
parts (Fig. 3 left top two panels). The first decomposed motion, which
we term the drag–causing perfect slithering motion, occurs when the
forward velocity of the fin is equal to the backward velocity of the

Figure 1 | A sampling of swimmers that use undulatory motions for propulsion, along with multiple snapshots of the body midline (a and c) or fin (b)
shape during swimming. (a) An anguilliform swimmer, such as an american eel. (b) A gymnotiform swimmer, such as the black ghost knifefish.

(c) A sub-carangiform swimmer, such as a zebrafish larva. The red dotted line along the body and fin snapshots indicates the envelope across multiple

undulations. In this work we show that across these kinematics, the total force on the propulsor can be decomposed into drag and thrust in spite of these

forces being intermingled on the propulsor. The figures were drawn in Adobe Illustrator by I.D.N. and M.A.M.
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traveling wave (Uw). As a result, the fin appears to move along a
stationary sinusoidal track (Fig. 3 left top panel). Each point on the
fin has a velocity that is tangential to its surface (Fig. 3 left top panel).
In this case the fluid is dragged forward by the tangential velocity
along the fin surface which results in a backward (drag) force on the
fin from the fluid. The second decomposed motion, which we term
the thrust generating frozen fin motion, occurs when the fin is frozen
in its undulatory shape, and that frozen shape drifts backward with a
velocity equal to the velocity of the traveling wave minus the trans-
lational velocity of the fin (Uw – U), when Uw is greater than U. This

motion pushes the fluid backward which in turn produces a forward
(thrust) force on the fin (Fig. 3 left middle panel). In the idealization
of the traveling wave as a sinusoid of constant amplitude, superposi-
tion of the kinematics of the perfect slithering and frozen fin motions
results in the undecomposed kinematics of the fin surface (Fig. 3 left
bottom panel). This fulfills both condition D1 (separated body move-
ments add up to give original body movements) and condition D2
(the separated body movements are without discontinuities and
physically realizable).

The above kinematic decomposition would be exact in case of an
infinitely long fin. However, this is not the case for the finite fin
length that we consider. For example, in the frozen fin case, the wave
can be considered frozen in different phases. Despite this, our com-
putational fluid simulations show that the thrust force does not
depend strongly on the phase as long as there is more than one full
wave on the fin, as is the case here. We next show that the kinematic
decomposition also fulfills the requirement that the force of drag and
the force of thrust sum to the undecomposed force from the fin (D3).

Dynamic decomposition. Dynamic decomposition here implies the
decomposition of forces on the swimming body. Without loss of
generality we consider a traveling wave that is moving backward,
as in Fig. 2b. If the decomposition into drag and thrust is valid,
then the total force F on the fin should satisfy the following equation

F U , Uw½ �~sgn Uw{Uð ÞT Uw{U½ �{D Uw½ �, ð1Þ

where square brackets indicate ‘‘function-of’’, T is thrust, D is drag,
and sgn[?] gives the sign of the argument. The data for F[U, Uw] are
plotted in Fig. 4a1–a4. We performed a separate set of simulations for
the perfect slithering motion (Us 5 Uw) for different values of Uw.
The force on the ribbon-fin in this case is D[Uw], which is plotted in
Fig. 4b.

Using Eqn. 1 and the results in Fig. 4b we calculate the thrust T[Uw

– U] for each data point in Fig. 4a1–a4. If the decomposition is valid
then the resulting data should be a well defined function of Uw – U.
This is found to be so in Fig. 4c. Additionally, the results for T[Uw–
U], obtained above, should also match results from another set of
simulations for the frozen fin case. To check this we performed
frozen fin simulations for different values of the fin translational
velocity Uf. There is no traveling wave in this case. The force on
the ribbon fin in this case is T[Uf] which should be the same function
as T[Uw–U] with Uf replaced by (Uw – U). The solid line of Fig. 4c
confirms this expectation.

Thus, we have two new results: first, an approach to separate the
mechanisms of drag and thrust, and second we obtain a correlation
not only for the thrust (Fig. 4c) but also for the drag (Fig. 4b) on an
undulatory propulsor.

The spatial segregation of drag- and thrust-related flows. Consider
a ribbon fin moving with U 5 3 cm/s and Uw 5 15 cm/s. Through
simulation, the total forward force is found to be 0.46 mN. The drag
causing perfect slithering mode has U 5 15 cm/s and Uw 5 15 cm/s.
The thrust generating frozen mode has no wave velocity but has a
backward velocity of Uw – U 5 12 cm/s. Separate simulations were
conducted for the drag and thrust causing modes. The calculated
thrust and drag forces were 0.92 mN and 0.52 mN, respectively.
The difference is 0.4 mN which is close to 0.46 mN computed for
the un-decomposed case, i.e., Eqn. 1 is approximately satisfied. We
plot the simulated axial velocity and pressure for these three cases in
Fig. 5 for the same phase of the fin. The slithering drag mode has thin
boundary layers outside of which the velocity has low magnitude and
does not have strong spatial gradients. On the other hand, the frozen
thrust mode has strongly separated regions behind the troughs and
crests of the wave along the fin. This velocity field and its gradients
are significant outside the boundary layer region of the slithering
mode. Wherever the velocity due to one mode is high, the velocity

Figure 2 | (a) A median fin (ribbon fin) undulatory swimmer

(gymnotiform swimmer): Apteronotus albifrons, the black ghost knifefish

of South America. (b) A backward traveling wave on the ribbon fin. (c)

Geometric configuration of the ribbon fin without the body for

computations. Figure adapted from Fig. 1 of ref. 13, reproduced with

permission from M.A.M (M.A.M owns the copyrights to all figures/images

in ref. 13).
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due to the other mode is low. The coupling of the drag and thrust
causing modes, through the nonlinear inertia term ((u ? =)u) in the
Navier–Stokes equations (Eqn. S11 in SI), is weak. Furthermore,
Fig. 5 shows that the dominant pressure regions due to the two
modes are also spatially segregated. The low pressure due to the
thrust-causing frozen fin mode is dominant behind the wave
troughs and crests, whereas the low pressure due to the slithering
mode is dominant away from the separation region in the concave
part of the wave shape. This spatial segregation of the drag– and
thrust–related flows is the fundamental basis of the success of the
drag–thrust decomposition. Linear behavior of the nonlinear
Navier-Stokes equations has been reported in the literature14.

Roper and Brenner14 have shown that a linear approximation of
the Navier-Stokes equations can be useful to accurately determine
drag at moderate Reynolds numbers.

Finally, we note the contributions to the force from pressure and
viscous terms. Due to separation, the pressure contribution to the thrust
force dominates in the thrust causing frozen fin mode. Of the total
thrust force of 0.92 mN, the pressure contribution is 0.81 mN and
the remainder is due to the viscous contribution. In the drag causing
slithering mode the viscous contribution is 0.12 mN out of the total
drag force of 0.52 mN and the remainder is due to the pressure con-
tribution. Thus, the pressure force dominates thrust while the viscous
contribution to drag is relatively larger due to thin boundary layers.

Figure 3 | The proposed kinematic decomposition into drag and thrust producing mechanisms. The top two rows split the decomposed kinematics into

two successive movements. First, in the slithering fin and drag producing mechanism, the fin follows a sinusoidal track. Therefore, the forward speed Us 5

Uw, which is the backward speed of the traveling wave. Also, the lateral velocity field is equal to that of the undecomposed fin kinematics. Over a time span

equal to half a period, the fin moves from the solid blue configuration to the dotted orange configuration, with a longitudinal displacement, Dddrag. The

frozen fin and thrust producing mechanism has no lateral velocity field and moves backward at a speed equal to Uw – U, where U is the speed of the

undecomposed fin kinematics. Therefore, over the same time span, the frozen fin moves backward with a longitudinal displacement, Ddthrust from the

dotted orange line to the solid red line. The slithering and frozen fin kinematics add to the undecomposed fin kinematics, where the blue and red lines

indicate the start and end configurations, respectively. The velocity vectors are redrawn on the right to show how the velocity vectors of the frozen and

slithering fins add to equal those of the undecomposed fin kinematics. The sign convention for velocity and force is described in the Methods.

Figure 4 | (a) The computed total force on the ribbon fin for different parameters. In a1-a3, the body velocity U was held constant as the wave velocity

Uw was varied. In a4, the wave velocity Uw was held constant as the body velocity U was varied. The black dotted lines indicating zero total force show

where drag and thrust are balanced. (b) Drag, i.e., the force on a ribbon fin during perfect slithering motion. (c) Thrust T computed as a function of Uw 2

U for each data point in (a) by assuming the kinematic decomposition (Fig. 3 and Eqn. 1). These data are shown by solid dots. Separate frozen fin

simulations were conducted as a function of Uf, shown by the solid black line. The dots cluster along this line giving evidence for the successful

decomposition of drag and thrust. The color of the dots correspond to the data in (a).

www.nature.com/scientificreports
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It has long been hypothesized that the drag of swimming fish is
higher due to the thinning of the boundary layers caused by undu-
latory motion9. Fig. 5 shows that the boundary layer flow is a key
feature of the drag causing slithering mode. Separated flow plays a
role in the thrust mechanism. The separated flow regions are suction
zones where the fluid is sucked backward by the undulating fin. This
leads to the thrust force. This is consistent with our flow visualization
data reported earlier15,16.

Generality of the drag–thrust decomposition. The decomposition
described above was applied to an idealized ribbon-fin with idealized
kinematics at a Reynolds number of <10,000. Since this idealization
may not be valid for swimming animals, we now examine the
applicability of the drag–thrust decomposition to swimming
animals with realistic body/fin geometries and measured
kinematics. We also examine the validity of the decomposition at
moderately high Reynolds numbers by applying the decomposition
to a robotic undulatory swimmer17.

Application to swimming animals. Our kinematic decomposition of
drag and thrust assumed a constant amplitude wave (Fig. 3). This
assumption is not strictly valid for swimming animals. For example,
in the black ghost knifefish the amplitude of oscillation of the ribbon-
fin tapers-off toward the two ends13 (Fig. 1). Anguilliform and car-
angiform swimmers have an amplitude that increases with body
length18–20 (Fig. 1). Additionally, the wave motion may not be strictly

sinusoidal. In the non-constant amplitude case, the kinematic split as
proposed in this work will not be exact. However, if the amplitude
changes are not large then the additional error may not be significant.
The approach is expected to work in cases where cross-sections
(width of the body in the lateral direction) of the body are non-
uniform, provided that the body width does not change sharply along
the body. The proposed decomposition is not expected to work for
indefinitely high Reynolds numbers, but it does work at moderately
high Reynolds numbers which will be demonstrated in the next
subsection. Finally, as the height of the ribbon-fin and its amplitude
of oscillation is reduced, the drag and thrust producing flow fields
may not remain as separate as the case shown in Fig. 5. Thus, as the
undulatory propulsor becomes slender (length of a fin ray shown in
Fig. 2c approaches zero), the decomposition of drag and thrust may
not be as clear. Given these issues, we examine the applicability of the
decomposition with simulations of the eel Anguilla rostrata, the
larval zebrafish Danio rerio, the black ghost knifefish Apteronotus
albifrons, and the mackerel Scomber scombrus. These examples show
where the decomposition is valid, and where it becomes invalid.

The drag, thrust, and undecomposed forces on a black ghost knife-
fish (gymnotiform), an eel (anguilliform), a larval zebrafish (sub–
carangiform), and a mackerel (carangiform) are tabulated in Table 1.
Table 1 shows that the error in decomposing forces on free swim-
ming knifefish, eel, and zebrafish is small compared to that in decom-
posing the force on a mackerel. During steady free swimming, the
average force in the swimming direction is zero. For a steady free
swimming organism, the drag and thrust components must be equal.
For the black ghost knifefish and the larval zebrafish, it is seen that
the drag and thrust forces are equal to each other within 5%. Note
that the knifefish displays a small variation in amplitude whereas the
zebrafish has a subcarangiform amplitude variation. For the eel,
which has an anguilliform amplitude variation, the drag and thrust
forces are equal with an error of 17% (Table 1). Thus, we see that our
decomposition works well for gymnotiform (and by similarity for
balistiform and rajiform), anguilliform, and subcarangiform swim-
mers, none of which display rapid variations in amplitude. But, the
decomposition does not work well for carangiform swimmers
because the rate of change of amplitude in these swimmers is very
high (Table 1). An assessment of why the decomposition works well
for modest variations in body or fin amplitude along the body length,
but not for large variations in amplitude, is presented in the
Discussion Section.

Application to a robotic knifefish. Here we examine how well the
decomposition works at moderately high Reynolds numbers. We
consider parameters for a robotic knifefish17, approximately three
times longer than the adult live knifefish. At typical kinematic para-
meters, such as two undulations along the fin undulating at 2.5 Hz,

Figure 5 | The axial velocity (left) and pressure (right) fields in a cross-

sectional plane at the bottom edge of the ribbon fin for three cases. Top:

Normal case with U 5 3 cm/s and Uw 5 15 cm/s. Middle: Perfect

slithering motion with U 5 15 cm/s and Uw 5 15 cm/s. Bottom: Frozen

fin motion with a backward (i.e. to the right) velocity of 12 cm/s. The

legend for axial velocity (left) show magnitudes that are scaled by Uw 5

15 cm/s. In the contour plot velocity to the left (i.e. forward direction) is

positive and to the right (backward) is negative. The legend for pressure

(right) show magnitudes scaled by rU2
w where Uw 5 15 cm/s.

Table 1 | Drag-thrust decomposition of free swimming black ghost knifefish fin, eel, larval zebrafish. Also shown is the decomposition of a
hypothetical fin with mackerel kinematics. The amplitude shown for the knifefish is at distance of 0.75 cm from base of the fin. The range for x
in A(x) is [0, 1]. Undecomposed forces equal to zero indicate free swimming cases

Knifefish Eel Zebrafish (larval) Mackerel

Amplitude (cm)

Amplitude function A(x) Experimental13 0.15e(x21)19 Experimental 0.02 2 0.08x 1 0.16x2 18, 20

Thrust force T (mN) 1.43 6.8 3 1024 4.3 3 1023 11.6 3 1023

Drag force D (mN) 1.48 8.2 3 1024 4.1 3 1023 46.8 3 1023

Undecomposed force F (mN) 0 0 0 21.4 3 1023

Net force D 2 T (mN) 0.05 1.4 3 1024 20.2 3 1023 35.2 3 1023

www.nature.com/scientificreports
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the Reynolds number based on fin length is around 130,000.
Decomposition of drag and thrust forces on ribbon-fins at the scale
of the robot was tested using simulations and experiments with the
robot. The fin has the same dimensions and kinematic parameters in
the simulation and the experiment. However, the surface of the
experimental fin departs from the simulated fin in a manner that
appears to affect our results, as will be described later.

Simulations of the decomposition were carried out for a fin the
same size as that on the robot, but without a body. In Section S2 and
Fig. S2 of SI we show that the forces on the body and the fin are
decoupled, and the presence of the body has no influence on the fin
forces. Hence, the decomposition can be carried out with or without
the body. We choose to carry out the decomposition without the
body to reduce the computational cost. We consider a case where
U 5 0 cm/s and Uw 5 40.75 cm/s. The net force generated by the fin
was found to be 384.7 mN. In the drag causing slithering mode, the
fin translated forward at U 5 Uw 5 40.75 cm/s. In the thrust-causing
frozen mode the fin translated backward with a velocity of Uw – U 5

40.75 cm/s (slithering and frozen velocity are same because U 5

0 cm/s in the undecomposed mode). Thrust and drag forces were
found to be 427.1 mN and 33.54 mN, respectively. The difference
between thrust and drag force (393.46 mN), matches well with the
force of the undecomposed mode (384.7 mN). Based on simulations,
we infer that the drag-thrust decomposition is valid at length scales of
robotic knifefish’s ribbon-fin.

As noted before, the parameters used in the experiments were
same as those used in simulations, above. Forces in the undecom-
posed, slithering (drag), and frozen (thrust) modes were measured to
be 226.8 mN, 229.5 mN, and 283.3 mN respectively. The difference
between drag and thrust force is not equal to the undecomposed
force. The undecomposed force and thrust force are of the same
order of magnitude just as it is in simulations. This raises two import-
ant questions: i) what is the source of the larger than expected slither-
ing (drag) mode force? ii) given this disagreement, is there a
resolution? These questions will be addressed in the Discussion
Section.

Utility of the drag–thrust decomposition. Optimal height of a
knifefish ribbon fin. What is the utility of separating drag and
thrust in the manner we have proposed? Next we show that this
decomposition provides a powerful predictive tool. To that end, we
consider a specific example problem: given the body of a knifefish,
which is held nearly rigid, what should be the height of its ribbon fin?
We also show how drag–thrust decomposition leads to models that
can predict the swimming velocity of an organism.

To find the preferred fin height, we hypothesized that the observed
height of the ribbon fin is such that the mechanical energy spent per
unit distance traveled, referred to as the mechanical cost of transport
(COT), is minimized. The COT was computed numerically for dif-
ferent fin heights as discussed below. We considered steady swim-
ming in which a fish moves with a constant mean velocity. For
simplicity, we considered a plate–fin configuration like that used
by Lighthill and Blake11 to study gymnotiform and balistiform swim-
ming. A plate of height s 5 2 cm and length L 5 10 cm was attached
to a ribbon fin of the same length (Fig. 6). These dimensions were
selected based on typical fin and body heights in adult knifefish12,13,21.
The following kinematic parameters were chosen: hmax 5 30u, f 5

3 Hz, l 5 5 cm. The fin height was varied from 0.5 cm to 2.5 cm. For
each fin height we solved the problem of self-propulsion by using a
previously developed efficient algorithm22. In these computations the
traveling wave motion of the ribbon fin attached to the plate was
specified. For each case we computed the mean power P spent by the
fin against the fluid over one period of the steady swimming cycle.
The time-averaged swimming velocity Us was estimated during
steady swimming. The cost of transport was computed as COT 5

P/Us.

Fig. 7 shows plots of the swimming velocity Us, the mean power P,
and COT as a function of the ribbon fin height h. The power spent on
the fluid follows a power law trend (Fig. 7a). The swimming velocity
Us first increases rapidly with respect to h and then changes slowly at
higher values of h (Fig. 7b). This trend is a direct result of different
scalings of drag and thrust forces with respect to h (Section S2 of SI).
The COT is low and nearly constant at smaller h after which it grows
rapidly (Fig. 7c). The basis of this increase in COT is that at larger h,
the power increases with increasing h but the corresponding increase
in Us is small. Hence there is a rapid growth of COT at larger h. Fig. 7c
shows that the ribbon fin heights that give lower values of COT, for a
plate height of 2 cm, are in the range of 0.5–1.1 cm. In this range the
COT does not change significantly but the swimming velocity is
highest at h 5 1.1 cm. In short, different scalings of drag and thrust
with respect to h lead to a specific trend of Us vs. h, which in turn
determines the trend of COT vs. h. The COT trend eventually pro-
vides the prediction for the fin height h that will minimize the meta-
bolic cost of movement, and as we will see in the next section, this
predicted height agrees well with observed fin heights.

Sensitivity of the optimal fin height to fish body size: The predicted
fin height (, 1 cm) is consistent with the mean fin height of 0.97 cm
that we measured for 13 species in 8 genera in the family
Apteronotidae of weakly electric South American knifefishes
(Table 2, at 50% body length). The standard deviation of the fin
height from the measured mean value (blue vertical bar in Fig. 7c)
is within the range of fin heights (0.5–1.1 cm) for which COT is
predicted to be low. Although the body height of the fishes we con-
sidered did vary, we found from a sensitivity analysis (see Section S3
of SI) that the influence of the plate (or body) height on the COT
trend is not significant. We show this result in Fig. 7c, where the red
shaded region shows the variation in COT due to a change in plate
height corresponding to the standard deviation in the body height of
the 13 species we measured.

Prediction of swimming velocity. Finally, to show that the proposed
drag-thrust decomposition can be used to predict swimming velocities,
a force balance equation similar to Eqn. 1 was written for the steadily
swimming fin–plate assembly (Eqn. S6 of SI). We used that equation to
derive an analytic solution for the fin height as a function of swimming
velocity (Eqn. S8 of SI), which can be rearranged to give swimming
velocity as a function of fin height. To test the analytic prediction of
swimming velocity we performed numerical simulations to compute
the swimming velocity. Excellent agreement between the analytic and
numerical solutions of swimming velocity is shown in Fig. 7b.

Discussion
Are there other ways to obtain drag–thrust decomposition? There
can be many kinematically consistent decompositions which satisfy

Figure 6 | Geometric parameters and the configuration of the plate-fin
assembly.
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kinematic conditions D1 (body movements creating drag summed to
body movements creating thrust result in the original undecomposed
movement) and D2 (body movements creating drag and thrust are
without discontinuities and physically realizable). However, the
kinematic decomposition depicted in Fig. 3 is the only one we have
found satisfying D1 and D2 as well as providing force decomposition
(D3, the sum of the decomposed drag and thrust forces is equal to
force in the originally observed swimming motion of the animal).
The primary reason that force decomposition becomes possible is
due to boundary layer flow in the drag mechanism and separated
flow in the thrust mechanism (Fig. 5). A boundary layer flow is
observed in the drag mechanism because in that case the velocity

on the fin surface is tangential to the surface itself (Fig. 5). This type of
internal boundary condition arises because the forward translational
velocity of the fin in the slithering mode is equal and opposite to the
wave velocity of the undulating fin. Any translational velocity in the
drag mode that is other than Uw will result in a velocity at each point
on the fin that is no longer tangential to the surface. This gives rise to
a flow field that is not purely due to the boundary layer and it couples
with the separated flow field due to the thrust mechanism. Thus, even
if other decompositions are kinematically correct, the force
decomposition will not work well. The kinematic decomposition
that we have is the one that leads to the least coupling between the
drag and thrust modes for the kinematics considered here.

Figure 7 | (a) Mechanical power expended in the fluid, obtained from fully resolved simulations of self–propulsion, as a function of the fin height. (b)

Swimming velocity as a function of the fin height h obtained from fully resolved simulation of self–propulsion as well as from a reduced order model

(solid line). (c) The mechanical cost of transport as a function of the fin height h obtained from fully resolved simulation of self–propulsion as well as from

a reduced order model. The red shaded region represents the variation of swimming velocity in (b) and cost of transport in (c) due to a perturbation to the

plate height. The perturbation to the height is equal to 60.85 cm, which corresponds to the standard deviation of the measured body heights in an

assortment of knifefish at the half way point along the fin (see Table 2). The dashed blue vertical line in (c) corresponds to the mean fin height measured,

and the blue shaded region represents the standard deviation in fin height. Note: The closed circle and the solid line in (b) and (c) have the same meaning.

Table 2 | Body length (BL), body length with filament (BLF), fin length (FL), body height (S), fin height (H), ratio of body height to fin height (R)
of 13 species across 8 genera of South American weakly electric fishes in the Apteronotidae, in order of body height at 50% along fin length.
Specimen identification numbers (Harvard Museum of Comparative Zoology) are represented by Sp. ID. Body height, fin height, and their
ratio (R) were measured at 25, 50, and 75 percent along the fin length, and the same are tabulated. Note: All lengths are in centimeters,
asterisk indicates that the quantity in question was estimated, not measured

25% FL 50% FL 75% FL

Genus Species Sp. ID BL BLF FL S H R S H R S H R

Adontosternarchus devanazii 59522 8.30 10.00 7.20 1.10 0.60 1.83 0.86 0.65 1.32 0.45 0.50 0.90
Adontosternarchus clarkae 78151 8.30 8.30 7.40 1.20 0.60 2.00 0.92 0.63 1.47 0.98 0.43 2.27
Adontosternarchus sachsi 92914 11.70 15.80 10.50 1.40 0.62 2.26 1.12 0.68 1.65 0.66 0.50 1.32
Apteronotus leptorhynchus 48686 10.90 12.80 9.40 1.82 0.60 3.03 1.49 0.71 2.10 0.80 0.71 1.13
Magosternarchus duccis 46884 11.20 13.00 10.50 1.80 0.78 2.31 1.50 0.73 2.05 0.90 0.65 1.38
Apteronotus bonapartii 78152 14.10 16.70 12.30 2.00 0.60 3.33 1.60 0.65 2.46 0.90 0.53 1.71
Sternarchella schotti 59517 14.80 17.20 12.90 2.04 0.87 2.34 1.60 0.95 1.68 0.98 0.73 1.34
Sternarchella terminalis 98361 14.80 15.60 12.40 2.30 1.00 2.30 1.80 1.06 1.70 1.10 0.97 1.13
Porotergus gimbeli 164198 15.70 15.70 14.50 2.10 1.06* 1.98 1.85 1.05 1.76 1.25 0.83 1.51
Apteronotus albifrons 78148 12.90 12.90 10.20 2.40 0.83 2.91 1.95 0.99 1.97 1.10 0.95 1.16
Sternarchogiton porcinum 164197 17.50 20.50 14.70 2.40 1.15 2.09 2.00 1.20 1.67 1.10 0.60* 1.83
Apteronotus albifrons 169184 16.40 19.50 13.50 3.10 0.93 3.35 2.40 1.10 2.18 1.40 1.10 1.27
Sternarchorhamphus muelleri 59514 33.00 39.70 26.90 3.88 1.75 2.22 2.82 1.53 1.84 1.80 1.26 1.43
Orthosternarchus tamandua 98368 35.60 35.60 28.10 4.34 1.67* 2.60 4.18 1.64 2.55 2.90 1.10 2.64

Mean 2.28 0.93 2.47 1.86 0.97 1.89 1.17 0.78 1.50
Standard Deviation 0.94 0.38 0.50 0.85 0.33 0.35 0.59 0.26 0.47
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As an example, consider a different kinematic decomposition
where the backward traveling wave is defined as the thrust producing
mechanism whereas the fin translating forward with velocity U is
defined as the drag producing mechanism. We used our data to check
if this kinematic decomposition also leads to force decomposition. If
valid then it should be possible to split the total force as

F U,Uw½ �~Ts Uw½ �{Df U½ �, ð2Þ

where Ts[Uw] is the forward force on a stationary fin with traveling
waves moving backward with wave velocity Uw, and Df[U] is the
force on a fin with a fixed shape, i.e. the frozen fin, that is translating
forward with velocity U. Using the data for F in Fig. 4a1–a4 and the
data for Df[U], available from our frozen fin simulations, we com-
puted Ts[Uw]. These values are plotted in Fig. 8 and compared to the
force on a stationary ribbon-fin from our prior work15. If this decom-
position is valid, all data should fall on a single curve in Fig. 8. That is
not the case. It can be shown that the reason this decomposition does
not work is because the corresponding flow fields are not decoupled.

Given that drag and thrust appear intermingled in swimming
organisms, especially in the undulatory mode, it has been hypothe-
sized that there must be some spatial or temporal separation between
thrust and drag production that allows the total force to be zero on
average over a swimming cycle19. A model to estimate thrust based on
temporal oscillations of the swimming velocity has been proposed23.
Our data suggests that a decomposition of the total force into drag
and thrust is possible without relying on spatio-temporal splitting.

Comments on different measures of drag reported in literature.
Appropriate measures of drag on a swimming organism have been
debated in literature for many decades24,25. Here, we discuss how drag
from our decomposition is differs from definitions of drag in the
literature. One measure that has been used is the tow-drag, i.e., the
drag on a non-swimming organism if it is pulled in the fluid at its
swimming velocity. The organism is usually not deformed in these
experiments or theoretical estimates. This drag measure is not
expected to be correct because the shape of the animal for the tow-
drag estimate does not match with shape of the fish during propulsive
movement24. The second measure is the drag obtained by pulling a
deformed non-undulating body through the fluid at its swimming
velocity, i.e., the drag on the frozen shape configuration. As noted
above and in Fig. 8, this does not result in successful decoupling of
thrust from drag. Our results suggest that an appropriate drag

measure for undulatory propulsion is the one corresponding to the
perfect slithering motion at the wave velocity (Fig. 5).

These measures are best illustrated by considering a hypothetical
swimming ribbon-fin with no body attached to it. According to the
drag-thrust decomposition and the data in Figs. 4b and 4c, a
ribbon-fin with Uw < 22 cm/s will swim with a velocity U <
9.5 cm/s. The first drag measure - the tow-drag - for this case corre-
sponds to the drag on a flat plate towed at 9.5 cm/s. This is estimated to
be 0.12 mN based on boundary layer theory. The second drag measure
corresponding to a frozen fin, moving at 9.5 cm/s, is 0.6 mN. Finally,
the third drag measure proposed by us corresponding to the perfect
slithering motion with Uw < 22 cm/s is 1 mN. Thus, our drag measure
is higher than the other two estimates for the scenario considered here.
The result is consistent with reports in literature that the tow-drag is
often found to be lower than that required to achieve a balance of drag
and thrust forces during swimming24,25. In general, however, the rela-
tive magnitudes of the three drag measures may not be in the same
order as in the example discussed above. It will depend on various
parameters including the geometric configuration.

It has been noted in the past that body undulations lead to a
reduction in drag on a swimming body26. That conclusion was based
on computing the total force on an infinite two-dimensional wavy
surface for a given imposed velocity U and then noting that as Uw is
increased the total force changes from being backward (drag-like) to
being forward (thrust-like). In this sense the presence of undulations
reduces the drag-like behavior. This is consistent with our results.

Limits of the drag–thrust decomposition. Results of the
decomposition of forces on swimming animals showed that the
decomposition is valid for swimming animals with anguilliform,
gymnotiform (by similarity balistiform and rajiform), and sub-
carangiform kinematics. But, the decomposition is not valid for
swimming animals with carangiform kinematics. Here, we present
a theoretical assessment of when the proposed decomposition will be
correct and when it will fail. For the purpose of analysis, consider
kinematics imposed on a rectangular surface (‘‘fin’’ hereafter) of
infinitesimal thickness. At any instant a given point on the fin
undergoes lateral displacement given by

y~A xð Þsin 2p
x
l

zft
� �h i

, ð3Þ

where A(x) is the amplitude which is a function of axial direction and
it determines the mode of swimming. The amplitude for different
modes of swimming is shown in Table 1. The deviation from exact
decomposition is a function of the rate of increase of amplitude with
body length. The deviation will be more if the rate of amplitude
change is high and vice-versa. This will be demonstrated below.

The slithering mode is affected by a deviation from exact decom-
position. The slithering mode has the property that velocity at each
point on the fin is tangential to surface of the fin. The velocity in the
slithering mode, at a point, is the resultant of the forward trans-
lational velocity Uw and the lateral velocity Vw. The angle, a
(Fig. 3), of the velocity at a point is given by

tan a~
2pA xð Þcos 2p

x
l

zft
� �h i

l
: ð4Þ

The direction of the resultant velocity at every point on the fin surface
must be equal to slope of the corresponding point if the velocity has
to be tangential to the fin surface. The slope of a point on the fin
undergoing traveling wave motion is given by

dy
dx

~
2pA xð Þcos 2p

x
l

zft
� �h i

l
z

dA xð Þ
dx

sin 2p
x
l

zft
� �h i

: ð5Þ

Note that if A(x) is constant then Eqn. 4 and 5 are identical resulting
in a perfect slithering motion where the resultant velocity of a point is

Figure 8 | The thrust force Ts computed as a function of Uw for each data
point in Fig. 3 by assuming a decomposition according to Eqn. 2. In this

case the data do not cluster along a single curve. The legend identifies

different simulation sets. For example, the set with Uw 5 15 cm/s was the

one where Uw was fixed and the value of U was changed.
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tangential to the fin surface. Substituting Eqn. 4 in 5 we get the
following equation

dy
dx

{tan a~
dA xð Þ

dx
sin 2p

x
l

zft
� �h i

: ð6Þ

The above equation is a measure of deviation from exact decomposi-
tion. At a given instant of time, the deviation from tangential velocity

is directly proportional to
dA xð Þ

dx
. The figures in the first row of

Table 1 show that the rate of amplitude change in anguilliform
swimmers, subcarangiform swimmers and knifefish is slower than
that in carangiform swimmers. In anguilliform swimmers the ampli-
tude gradually increases from head to tail, i.e, the rate of change of
amplitude is smaller. Thus, the deviation from perfect slithering
motion is small. The same is true for the subcarangiform swimmer
as well. In case of the knifefish amplitude, the amplitude first
increases, reaches a peak, and then decreases. But the rate at which
amplitude increases or decreases is very small, hence the deviation
from perfect slithering motion is small. Thus, the decomposition of
eel, larval zebrafish and knifefish worked well. However, in carangi-
form swimmers, the amplitude remains relatively small and constant
for at least half the body length after which it increases rapidly. The
rate of change of amplitude is very high towards the caudal portion of
the body thus resulting in a large deviation from perfect slithering
motion. Consequently, it is not surprising that the decomposition did
not work for mackerel.

Why the drag–thrust decomposition failed for the robotic knifefish.
Using numerical simulations it was shown that the decomposition
was valid for the robotic knifefish. But, experimental data did not
agree with the simulations. The main difference between the
experiments and the simulation was in the force of the slithering
mode. The slithering drag force from experiment was higher than
that from simulation; this implies that the drag force is higher than
what it should be for the decomposition to be valid. We hypothesize
that the larger than expected slithering drag force in the experiment
is due to the imperfections on the robot’s fin surface. The robotic fin
is made up of discrete rays (32 rays 1 cm apart) that are connected by
Lycra fabric; see Fig. 9 in which one of the fin rays is highlighted in
white. It is not possible to produce a smooth sinusoidal wave on the
fin unless the fin is made up of very large number of rays. Owing to
the limited number of rays, the sinusoidal wave generated by the
robotic fin is not smooth (see Fig. 10). With kinks on its surface the
robotic fin cannot maintain a thin boundary layer in the slithering
mode like that in simulations. The kinks will introduce disturbances
into the boundary layer (see Fig. 11). Unlike its real counterpart, the
robotic fin modeled in the simulation is composed of very fine grid
points (whose resolution is of the order of the fluid grid resolution).

Any curved surface can be imposed (sinusoidal or otherwise) on the
modeled fin surface without causing any kinks. Hence, it leads to a
thin undisturbed boundary layer in the slithering mode (see Fig. 11).
The boundary layer on the robotic fin is very thick when compared
to that from simulation or that from flow past a flat plate at the same
Reynolds number (see Fig. 11). The large thickness of the boundary
layer may also indicate separated flow, which could lead to the large
drag force measured in the experiment.

An alternate estimate of the drag force on the robotic ribbon fin.
Given that the slithering mode force in the experiment does not
satisfy the drag–thrust decomposition due to disturbances caused
by surface kinks, we propose that the next best choice may be to
use a drag estimate that is similar to the tow–drag. This is because
the surface imperfections on an undeformed (or straight) robotic
ribbon–fin would be much less and consequently the flow would
be less perturbed or separated. There is subtle, yet important,
difference between our estimate of drag and the conventional
measure of tow-drag. In the conventional measure of tow–drag,
the swimmer is towed at its swimming speed in stationary water.
In contrast, we measure the drag by towing a straight fin, in
stationary water, at the velocity of the slithering mode (which is
equal to wave velocity, Uw 5 40.75 cm/s) instead of swimming

Figure 9 | The robotic knifefish used in the drag-thrust decomposition
experiments. The robotic ribbon-fin is composed of 32 fin rays and a Lycra

fabric connecting the rays. One of the fin rays is coloured white to highlight

it.

Figure 10 | The surface of the robotic ribbon fin during sinusoidal
undulations. The material between adjacent rays folds and results in kinks

on the fin surface.

Figure 11 | A comparison between the boundary layer due to, a) flow past
a flat plate, b) slithering motion of a robotic ribbon fin, c) and slithering
motion of a modeled robotic fin in a simulation. The boundary layer is

shown on a horizontal plane 1 cm above the bottom edge of the fin toward

the robot body. The color bar represents the axial velocity.
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speed. The force was measured to be 81.9 mN. This value is closer to
the expected value of 56.6 mN obtained from the drag thrust
decomposition estimate.

Why the drag–thrust decomposition works for real knifefishes.
Simulations have shown that the decomposition is indeed valid at
moderately high Reynolds number. Experiments on the robotic
knifefish, however, suggest possible limitations of the decompo-
sition. The decomposition is sensitive to any deviation from
perfect slithering mode, be it due to high levels of amplitude
change or high roughness on the fin surface. A knifefish’s ribbon-
fin is composed of 120–320 rays spanning fin lengths of 10–30 cm,
giving typical densities of about one ray per millimeter (Table 4 and
Fig. 41 of ref. 27). Many of these fin rays branch into two rami half the
way from their base to their distal ends, which would effectively
double the ray density along the very portion of the fin surface that
could become uneven due to spreading between the rays when they
are oscillated27. With such fine ray spacing, a knifefish can produce
curved surfaces on its fin without kinks. In contrast, on the robot the
ray density is one ray per 10 mm, resulting in a much less smooth fin
surface. We therefore expect that drag-thrust decomposition would
be applicable to a robotic ribbon-fin if it can be designed to have
higher ray density so that the fin surface is smoother.

Methods
Experimental setup. Robotic undulating fin. The robotic model used for the
experimental work was the ‘Ghostbot,’ a biomimetic knifefish robot which undulates
an elongated fin to generate thrust (see Fig. 9). The robot consists of a rigid cylindrical
body that houses the motors and electronics to drive the individual rays of the fin.
There are 32 rays to actuate a rectangular Lycra fin measuring 32.6 cm by 5 cm. More
details of the robot are found in17, with the only difference being the depth of the fin,
which was 3.37 cm in the previous work rather than 5 cm for the fin used in the
experiments discussed here.

Measuring hydrodynamic forces. The robot was suspended horizontally into a variable
speed flow tank from an air-bearing platform allowing near frictionless motion
in the longitudinal axis. We fixed the robot in the lateral and vertical directions. We
placed a single axis force transducer (LSB200, Futek, Irvine, CA, USA) in the lon-
gitudinal axis between the air-bearing platform and mechanical ground, allowing us
to measure the forces generated by the robot or acting on the robot along that axis.
Voltages from the force transducer were recorded at 1000 Hz. For each trial, we
allowed ample time for the hydrodynamics to reach steady state (30–60 seconds),
then averaged the last 10 seconds of data, which was converted to force units based on
the calibration, which had a maximum nonlinear error of 0.034%. The flow speed of
the water tunnel was measured and calibrated using particle image velocimetry (PIV).
More details on PIV are provided in the following section.

Particle image velocimetry (PIV). We analyzed horizontal PIV planes to measure the
boundary layer thickness caused by the fin. The PIV setup used is the same as the one
described in16. In short, a 2 W laser beam (Verdi G2, Coherent Inc., Santa Clara, CA,
USA) is scanned at 500 Hz to create a planar laser light sheet. A high-speed camera
(FastCam 1024P PCI, Photron, San Diego, CA, USA) imaged reflective particles
suspended in the fluid (44 micron silver coated glass spheres, Potter Industries, Valley
Forge, PA, USA) at 500 frames per second, matching the scanning rate of the laser.
High-speed video was analyzed using a commercial software package (DaVis,
LaVision GMBH., Göttingen, Germany). Successive frames of the video were cross-
correlated to calculate the velocity vector field of the fluid. Cross-correlation consisted
of two passes with decreasing interrogation windows, first with an interrogation
window of 32 by 32 pixels with 50% overlap and second with a window of 16 by 16
pixels with 50% overlap.

Numerical problem formulation. For the numerical simulations, the ribbon fin is
modeled as a thin membrane as shown in Fig. 2. The angular position h(x, t) of any
point on the fin (described above in under Results) is modeled as

h x,tð Þ~hmax sin 2p
x
l

{ft
� �

: ð7Þ

This corresponds to a sinusoidal traveling wave along the fin of length L and height h.
Kinematic parameters are frequency f, hmax, and l. The speed at which the wave form
travels along the fin is called the wave velocity, Uw 5 fl. In the optimal ribbon fin
height analysis (presented in Results section), the knifefish is modeled as a plate-fin
assembly where a rigid plate is attached to the ribbon-fin in place of the fish’s rigid
body. In these simulations, the rigid plate is modeled as a rigid surface. The properties
of water are used for the fluid. Two types of simulations are performed in this work. In
one type, the translational velocity U of the fin and/or plate is specified along with the
deformation kinematics of the fin (Eqn. 7). These simulations are carried out in the
frame of reference of the fin/plate. Hence the translational velocity U appears as an
imposed free stream velocity. Rotation of the fin/plate is prohibited.

In the second type of simulation, only the deformation kinematics of the fin are
prescribed, which result in a self-propelling fin-plate assembly. Complete details of
the computational method and validation are given in refs. 15, 22. In this method, the
viscous Navier-Stokes equations along with the incompressibility constraint are
solved in the entire domain. The effect of the immersed fin/plate is resolved by a new
constraint based formulation described in22. A finite difference method that is 6th

order in space and 4th order in time is used. The grid size was chosen after performing
a grid-sensitivity study. The Courant-Friedrichs-Lewy (CFL) number is 0.25 for all
simulations. Periodic boundary conditions are used in all directions. The computa-
tional domain was made large enough to minimize the impact of periodicity. Mean
forces and power of the fin were calculated as the time average over at least one period
of oscillation, after a quasi-steady state is reached.

Parameters chosen to match those of an adult black ghost knifefish12 are: fin length
L 5 10 cm, fin height h 5 1 cm, f 5 3 Hz, hmax 5 30u, and l 5 5 cm. The density and
viscosity of water are taken as r 5 1, 000 kg/m3 and m 5 8.9 3 1024 kg/m?s unless
otherwise specified.

Numerical simulations of swimming animals. Real three dimensional geometries of
the bodies or fins were simulated in all cases except the mackerel where a sheet-like fin
was simulated with mackerel-like kinematics. The simulation parameters and the
kinematics are given in Table 3. The fin profile and the kinematic data of the knifefish
were experimentally obtained by us13. Only the ribbon-fin of the knifefish was con-
sidered for the decomposition. The body of the knifefish was not considered for the
same reason the body was not considered in the robot simulation. Experimentally
extracted kinematic data and body profile of the larval zebrafish were provided by
Melina Hale of The University of Chicago. The body profile of the eel was taken from
Kern and Koumoutsakos’28 analysis of anguilliform swimming. The kinematics of
both the mackerel and eel were described by Eqn. 3, where the amplitude of kinematic
undulations are based on experiments. Eel kinematics were based on experiments by
Tytel and Lauder19, and mackerel kinematics were based on experiments by Videler
and Hess18.

Sign convention. Refer to Fig. 3 and Fig. 6. The forward direction is to the left and the
backward direction is to the right.

Translational velocities U and Us, of the swimming body or the fin, are positive if
directed to the left (forward). The wave velocity Uw is positive if directed to the right
(backward). The frozen fin velocity Uf is positive if directed to the right (backward). In
Fig. 3, Us 5 Uw for the slithering mode implies that the translational velocity Us is
positive and directed to the left (forward) when the wave velocity Uw is positive and
directed to the right (backward). Uf 5 Uw 2 U for the frozen mode implies that when
the value of U (positive when directed forward) is subtracted from the value of Uw

(positive when directed backward) to give a positive value for Uf then the frozen
velocity is pointed backward. The lateral velocity is positive when directed upward
and negative when directed downward (Fig. 3).

All forces considered in this work are parallel to the length of the plate/body and the
fin. The thrust force on the fin is positive to the left (forward) while the drag force on the
fin is positive to the right (backward). The resultant force on the fin (5 thrust – drag) is
positive to the left (forward). By action–reaction the thrust force on the fluid is positive to
the right (backward) while the drag force on the fluid is positive to the left (forward). The
resultant force on the fluid due to thrust and drag is positive to the right (backward).

Table 3 | Simulation parameters

Knifefish Eel Zebrafish (larval) Mackerel

Body/Fin dimensions length 3 height (cm2) Actual (9 3 1) 1 3 0.1 Actual (0.38 3 0.04) 1 3 0.2
Wavelength l (cm) 3.75 1 0.31 1
Frequency f (Hz) 10.3 5 33.3 15.7
Fluid density (kg/m3) 1000 1000 1000 1000
Fluid viscosity (Pa s) 0.9 3 1023 1.4 3 1025 0.9 3 1023 0.9 3 1023

Wave velocity (cm/s) 38.62 5 10.32 15.7
Translational velocity (cm/s) 11.9 2.89 1.125 10
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Measurements of fin and body size of South American weakly electric fishes. A
group of 13 species in 8 genera in the family Apteronotidae of South American weakly
electric fishes were considered. The family Apteronotidae is one of five families
encompassing 32 genera and 135 species of South American knifefishes29. We
restricted our measurements to a subset of one family for practical reasons, but it is
evident from illustrations and images of knifefish in other families that the
Apteronotidae are quite typical in terms of the body height to fin height issue
examined here27,29,30.

An image of each specimen was provided by Andrew Williston of the Museum of
Comparative Zoology, Harvard University. The fin and body height measurements
were made at three locations along the fin length from the rostral tip: 25, 50, and 75
percent. The height of the fin was measured by measuring the length of the collapsed
fin ray. The height of the body was measured along a line that was perpendicular to the
body axis. The lines of measurement are shown in Fig. 12. The measured data are
tabulated in Table 2. For specimens in which fin rays were not present for mea-
surements at a needed position along the fin, ray length was estimated based on the
trend of neighboring fin ray lengths. These data points are marked by an asterisk in
the table.
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Figure 12 | The lines along which the fin length, fin height, and body
height were measured for Apteronotus albifrons. Scale bar: 10 mm. The

photograph, ichthyology specimen 78148 (mczbase.mcz.harvard.edu/

guid/MCZ:Ich:78148), is reproduced with permission from the Museum

of Comparative Zoology, Harvard University.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7329 | DOI: 10.1038/srep07329 11

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Title
	Figure 1 A sampling of swimmers that use undulatory motions for propulsion, along with multiple snapshots of the body midline (a and c) or fin (b) shape during swimming.
	Figure 2 
	Figure 3 The proposed kinematic decomposition into drag and thrust producing mechanisms.
	Figure 4 
	Figure 5 
	Table 
	Figure 6 Geometric parameters and the configuration of the plate-fin assembly.
	Figure 7 
	Table 
	Figure 8 The thrust force Ts computed as a function of Uw for each data point in Fig. 3 by assuming a decomposition according to Eqn. 2.
	Figure 9 The robotic knifefish used in the drag-thrust decomposition experiments.
	Figure 10 The surface of the robotic ribbon fin during sinusoidal undulations.
	Figure 11 A comparison between the boundary layer due to, a) flow past a flat plate, b) slithering motion of a robotic ribbon fin, c) and slithering motion of a modeled robotic fin in a simulation.
	Table 
	References
	Figure 12 The lines along which the fin length, fin height, and body height were measured for Apteronotus albifrons.

