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Abstract— In this paper we present a method to stimulate
multiple muscles in a human arm to perform interaction tasks,
using an implanted Functional Electrical Stimulation (FES)
neuroprosthesis. The unstable effect arising from interaction
tasks is considered, and the arm stability is directly treated as
one of the control objectives in the controller design. By ex-
ploiting the kinematic and muscular redundancy of the system,
we can control the interaction force and the arm’s stiffness
property simultaneously, thus ensuring the stable execution of
interaction tasks. A representative example of such interaction
tasks, namely the “pushing with a stick” task, is simulated. It
is found that using our proposed controller, as compared to a
previously developed feedforward FES controller that does not
consider arm stiffness or stability, the stability of the arm is
guaranteed while the task of force control is correctly achieved.

I. INTRODUCTION

Functional electrical stimulation (FES) is a promising
technology for activating muscles and restoring lost functions
to patients with spinal cord injuries. The long-term goal of
this study is to develop an FES-control strategy to restore the
ability to perform interaction tasks to people with paralyzed
arms. Many FES controllers have been developed previously
aiming at restoring the lost functions to people with para-
lyzed limbs, as were surveyed by Lynch and Popovic [1],
and Zhang et al. [2]. While these controllers focus on the
capability of the muscles that can be stimulated to restore
the lost functions, they have not taken into consideration the
unstable nature of interaction tasks.

Many interaction tasks in our daily lives are inherently
unstable. For example, tightening a screw with a screwdriver
or pushing through a stick compromises the stability in
directions perpendicular to the tool [3][4]. To successfully
execute these unstable tasks, the mechanical stability of
the coupled arm–hand-tool system needs to be achieved.
In robotics community, such stability is generally achieved
using feedback control, but there are many challenges asso-
ciated with implementing an FES feedback controller. These
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include the low stimulation rates typical for FES systems
and the delays that can lead to feedback instabilities [5]. In
control theory it is well known that stabilizing an unstable
system generally requires high-frequency feedback, which is
yet to be feasible using FES.

An alternative strategy that is commonly utilized by unim-
paired humans is feedforward regulation of the stiffness of
the arm [6], either by muscle co-contraction [7] or by adjust-
ing the arm posture [8]. Recently strategies for feedforward
control of the stiffness of an arm has been introduced to the
robotics community and gives rise to the design and control
of variable stiffness actuators [9]. These robots, typically
equipped with muscle-like actuators and redundant kine-
matic degrees-of-freedom (DoFs), exploit the redundancy to
achieve a certain stiffness profile which helps accomplishing
desired behaviors, such as throwing [10] and kicking [11].
However, to our knowledge, similar attempts have not yet
been implemented to the FES controllers beyond the purpose
of tremor suppression through muscle co-contraction [12],
mainly due to the inability to predict the multi-joint stiffness
of the arm under FES control. Recently it has been shown
that the stiffness of an intact limb can be predicted by a
musculoskeletal model incorporating the short-range stiffness
(SRS) property of muscles [13][14]. Based on these studies,
more recently we have developed a computational model to
predict the stiffness and characterize the stability of the arm
under FES control for postures throughout the workspace
[15].

The purpose of this study is to build on the computational
model to develop an FES controller that can exploit both
muscular and kinematic redundancy to regulate the stiff-
ness of the arm, in order to achieve arm stability while
accomplishing the task of generating interaction force. The
proposed controller is currently formulated as an optimiza-
tion, and can be used as a real-time controller if evaluated
quickly enough. To demonstrate the effectiveness of our
proposed controller, a representative interaction task, namely
the “pushing with a stick” task has been simulated. Both the
proposed controller and a previously developed feedforward
FES force controller that does not consider stability [16]
are tested on the simulated task, and the performance using
the two controllers is evaluated. Based on the results, our
proposed controller has shown to be effective in achieving
both objectives of force control and arm stability, while the
previously developed controller is only able to achieve the
objective of force control.
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Fig. 1. Schematic drawing of a human (skeleton) generating interaction
force through a hand-tool.

The paper is organized as follows. Section II presents
the description of the class of problems that are considered.
Section III presents the models that are used in this study, as
well as provides the derivations of the two objectives: force
control and arm stability control. Section IV presents the
mathematical formulation of the problem that is considered,
and the dimension reduction approach that is used to simplify
the problem. Section V presents the simulated task of “push-
ing with a stick,” with the results of using both the baseline
and proposed controller. Finally Section VI summarizes the
study and addresses discussions.

II. PROBLEM STATEMENT

Given
• a desired Cartesian location of the endpoint of the arm

xdes
ep ∈ R3×1,

• a stick-like hand-tool of length ltool to be held, assuming
a ball-and-socket attachment between the endpoint of
the arm and the hand-tool, and

• a desired endpoint force fdes
ep ∈ R3×1 to be applied along

the axis of the hand-tool,
we want to find the arm posture q ∈ Rn×1 for its n kinematic
degrees-of-freedom (DoFs) and the activations α ∈ Rm×1

for its m muscles that can be stimulated, to produce fdes
ep at the

endpoint location xdes
ep through the hand-tool, while ensuring

the stability of the arm during the execution of the task.
Fig. 1 gives an illustration of this class of interaction tasks.
In multiple-muscle FES neuroprosthesis, there are generally
more muscles that can be stimulated than the kinematic DoFs
of the arm (i.e. m > n), and the arm has more kinematic
DoFs than the Cartesian specification of the endpoint location
(i.e. n > 3), therefore the system has both muscular and
kinematic redundancy with respect to the task.

III. MODEL OF A HUMAN ARM DRIVEN BY FES
NEUROPROSTHESIS

A. 3-D musculoskeletal model of a human arm

The musculoskeletal model of the upper extremity de-
veloped by Holzbaur et al. [17] is implemented in the
OpenSim environment [18] in this study. The model incor-
porates kinematic representations for the shoulder and elbow
joints, and includes 37 muscle segments. Our simulations
consider five kinematic degrees-of-freedom (DoFs): three at
the shoulder and two at the elbow, while the wrist joint

is considered fixed. Among the 37 muscle segments, 16
segments are chosen to represent the muscles that can be
activated by an implanted FES neuroprosthesis [19] (Subject
1). They are: biceps (BIClong and BICshort), brachialis
(BRA), deltoid (DELT1, DELT2, and DELT3), infraspinatus
(INFSP), latissimus dorsi (LAT1, LAT2, and LAT3), upper
pectoralis (PECM1), lower pectoralis (PECM3), pronator
teres (PT), supraspinatus (SUPSP), and lateral and medial
heads of triceps (TRIlat and TRImed). In addition, we scale
the maximum isometric force of the FES-activated muscles
to 50% of their nominal values that appear in the original arm
model, to capture the reduced force-generating capability of
muscles artificially activated using FES [20]. The inertial
parameters are taken from Winter [21].

B. Force control

The equation of motion of the arm, using FES-activated
muscles as actuators, can be written as

M(q)q̈ + c(q, q̇) + g(q) = τm + J(q)Tfext
ep , (1)

where q ∈ R5×1 is the vector of joint angles that uniquely
defines an arm posture, M , c, and g are the inertial, cen-
trifugal and Coriolis, and gravitational terms respectively,
τm ∈ R5×1 is the torque produced by FES-actuated muscles,
fext
ep ∈ R3×1 is the external force applied at the endpoint, and
J(q) ∈ R3×5 is the Jacobian that transforms the external
force to joint torque.

In endpoint force control tasks, like the problem defined
above, the arm is at equilibrium, and the external endpoint
force is the reaction force of the desired endpoint force(

fext
ep = −fdes

ep

)
, thus equation (1) is reduced to

g(q) = τm − J(q)Tfdes
ep . (2)

The muscle torque τm is the product of muscle moment arms
and muscle-fiber forces, which are limited to the posture-
dependent maximum achievable muscle forces, fm

0 (q),

τm = R(q)Tfm(α,q)
= R(q)T [αfm

0 (q)] ,
(3)

where α = [α1, α2, ..., α16] is the vector of muscle activa-
tions with αi ∈ [0, 1], and R(q) ∈ R16×5 is the matrix of
muscle moment arms.

By rearranging and combining equations (2) and (3), we
have the objective of force control as

R(q)T [αfm
0 (q)] = g(q) + J(q)Tfdes

ep . (4)

Additional kinematic constraints that we consider here are:
• the endpoint position of the arm needs to be at the

desired endpoint position, L(q) = xdes
ep , where L(q) is

the forward kinematics which maps the vector of joint
angles q to the Cartesian location of endpoint, and

• the palmar surface of the hand needs to be vertical.
The first constraint is obvious, as initially stated in the
problem statement. The second constraint is inspired by the
normal usage of hand-tools, as will be described later.

It is important to point out that the force control objective
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(4), while satisfying the constraints above, is redundant, since
the total DoFs (the number of muscles that can be stimulated
plus the number of kinematic DoFs of the arm) is larger
than the number of joint torques and constraints. As will be
discussed subsequently, such redundancy can be exploited to
fulfill the secondary objective: the stability of the arm.

C. Arm stability control

A key factor that leads to successful execution of inter-
action tasks is the stability of the arm system. To achieve
arm stability, in this work we explore the control of the
stiffness property of the arm by exploiting the muscular and
kinematic redundancies. Recently it has been shown that the
stiffness of a limb can be predicted by a musckuloskeletal
model incorporating the short-range stiffness (SRS) property
of muscles [13][14], and based on above, more recently we
have developed a model which estimates the intrinsic joint
stiffness of the arm under FES control [15] as

Kint
J (α, q) = R(q)TKSRS(α, q)R(q) +

∂R(q)
∂q

T

fm(α, q)−
∂g(q)
∂q

,

(5)
where the second term corresponds to the equivalent stiff-
ness resulting from the change of muscle moment arms
to the change of joint angles, and the third term is the
equivalent stiffness reflecting how the gravitational torques
change with joint angles. In the first term KSRS(α,q) =
diag

(
[kSRS

1 , kSRS
2 , ..., kSRS

16 ]
)

where kSRS
i is the SRS of the i-

th muscle-tendon unit, and its calculation, detailed in [22],
is briefly reviewed here. This calculation assumes the SRS
for the entire muscle-tendon unit can be described by the
series connection of an elastic tendon with stiffness kt

i in
series with a muscle with force-dependent stiffness km

i . The
net stiffness for each muscle-tendon unit is then given by

kSRS
i =

km
i k

t
i

(km
i + kt

i)
. (6)

The stiffness of the contracting muscle is dependent on the
force within that muscle, fm

i , as follows

km
i =

γfm
i (αi,q)
L0

m
, (7)

where L0
m is the optimal muscle length, and γ is a dimension-

less scaling constant (γ = 23.4) used for all muscles [22].
The tendon stiffness is defined by the slope of the generic,
dimensionless force-strain curve [23], and then scaled for
each individual muscle-tendon unit. Passive joint properties
are excluded in the model.

In addition to intrinsic joint stiffness K int
J , the task of

generating interaction force through a hand-tool can cause
external destabilizing stiffness, as follows

Kext
J (q) = ∂τ ext

∂q
=

∂

∂q

[
−J(q)Tfdes

ep

]
= −∂J(q)

∂q

T

fdes
ep − J(q)T ∂fdes

ep

∂q

= −∂J(q)
∂q

T

fdes
ep − J(q)T ∂fdes

ep

∂x
∂x
∂q

= −∂J(q)
∂q

T

fdes
ep + J(q)TK tool

ep J(q). (8)

The first term stems from the change of the Jacobian of the
arm depending on the joint positions, as discussed in [4]. The
second term, which will be zero if the endpoint of the arm is
to interact with the environment directly, highlights the extra
destabilizing effect arising from the usage of hand-tools.
Generating interaction force through a hand-tool introduces
an extra destabilizing stiffness at directions perpendicular to
the axis of hand-tool, as suggested by Rancourt and Hogan
[3]. For instance, if the interaction force is in the z-(vertical)
direction, the endpoint-level destabilizing stiffness from the
hand-tool can be written as

K tool
ep = diag

([
|fdes

ep |
ltool ,

|fdes
ep |
ltool , 0

])
. (9)

In this study, the combination of intrinsic joint stiffness
K int

J and external destabilizing stiffness Kext
J provides a suf-

ficient evaluation to the stability of the arm. The eigenvalues
of the combined joint stiffness matrix are used to determine
the stability of the arm, and therefore the objective of arm
stability control can be written as:

The system, described by(α0,q0), is stable if
∀ Re

{
eig
[
K int

J (α0,q0) +Kext
J (q0)

]}
< 0. (10)

If all eigenvalues of the combined joint stiffness matrix
are negative, the static restoring torques in response to any
imposed joint displacement will be in directions opposing the
displacement. Therefore the arm will restore to its original
posture, as the viscous properties during the maintenance of
posture are dissipative [24], and the arm is open-loop stable.

IV. CONTROLLER DESIGN

A. Mathematical formulation of the original problem

With the mathematical formulations as described in the
previous section, now we can derive the formulation of the
original problem, by combining both of the objectives: force
control (4) and arm stability control (10). Because the arm
system has more total DoFs (the sum of kinematic DoFs and
muscular DoFs) than the task requirements, optimization is
used to resolve the redundancy. A cost function minimizing
the sum of squared muscle activations is used, as suggested
by Anderson [25]:

C =minimize
α,q

‖α‖2

subject to 0 ≤ αi ≤ 1

L(q) = xdes
ep

palm constrained vertical

R(q)T [αfm
0 (q)] = g(q) + J(q)Tfdes

ep

Re
{

eig
[
K int

J (α,q) +Kext
J (q)

]}
< 0.

(11)
In (11) we only require the eigenvalues of the combined
joint stiffness matrix to have negative real components, and
no stability margin for error is considered yet. The zero on
the right hand side can be modified to a negative number, if
a stability margin is desired.

This optimization is high-dimensional and contains local
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Fig. 2. The 1-D kinematic null space. Muscles are excluded for clarity. The
pink ball is the location of the defined endpoint. Three different postures
within the null space for this particular endpoint are shown. The orientation
of the cooridnate system used in this study is also shown. The origin is
coincident with Incisura Jugularis. The x-, y-, and z-axes are in the lateral,
anterior, and vertical directions, respectively.

minima. Moreover, the muscular and kinematic parameters
have to be evaluated in the Opensim at each iteration of the
optimization, which is too slow for real-time implementation.
An alternative, as suggested by [26], is to import the full
musculoskeletal model into the MATLAB ahead of time, so
as to enable real-time evaluation of the muscular parameters.
Inspired by this approach, we further developed a dimension
reduction method to directly parameterize the kinematic null
space and import the muscular parameters only at postures
within this relatively small null space, as explained below.

B. Dimension reduction of the kinematics

The endpoint of the arm is defined to be along the axis
of pronation/supination at a distance from the elbow corre-
sponding to the location of the knuckles. This corresponds
approximately to the 5th metacarpophalangeal joint. The
endpoint is described in Cartesian coordinates (x, y, and z),
whereas there are five DoFs for the joint space coordinate
system. The mismatch in dimensions creates a 2-D null space
in which the joint angles can vary arbitrarily while the same
endpoint position is achieved. To reduce the dimension of
the problem we pose one more constraint on the elbow
pronation/supination angle such that the palmar surface of
the hand is always vertical. This constraint is chosen because
of its functional relevance: it resembles the postures that
humans often use in daily tasks, such as holding a fork during
eating, or holding a water cup when drinking. Moreover, it
has been shown that the elbow pronation/supination angle
does not have a substantial effect on the joint stiffness [8].
With this additional constraint, now we are left with a 1-
D null space that can be parameterized by the angle of
shoulder elevation q2. For a specified endpoint location, we
discretize the 1-D null space in q2 ∈ [0◦, 90◦], evaluate and
report the muscular parameters from OpenSim to MATLAB,
the environment where all subsequent computations take
place. Fig. 2 shows an example of the 1-D kinematic null
space for a specified Cartesian location of the endpoint.
Muscular parameters at these discrete arm postures are then
interpolated using cubic spline fit function in MATLAB for
the use in the optimization routine.

C. Simplified problem formulation
We use the aforementioned four kinematic constraints,

three for the endpoint location and one for the palm surface
vertical, and parameterize the remaining 1 DoF by q2. There-
fore, we arrive at a simplified formulation of the problem:

C =minimize
α,q2

‖α‖2

subject to 0 ≤ αi ≤ 1

R(q2)
T [αfm

0 (q2)] = g(q2) + J(q2)
Tfdes

ep

Re
{

eig
[
K int

J (α, q2) +Kext
J (q2)

]}
< 0.

(12)
The MATLAB function fmincon() is used to solve this
simplified optimization problem.

V. SIMULATED EXPERIMENTS

A. “Pushing with a stick” task
The goal of this study is to develop a controller to restore

the ability for paralyzed subjects to perform functional
interaction tasks in daily life. For this purpose we simulate
the task of “pushing with a stick” as a representative of these
interaction tasks. The task requirement is described below:

• The desired endpoint location of the arm is set to be in
front of the sternum at a distance of about half length of
the arm, xdes

ep = [0.00, 0.27,−0.05](m). The orientation
of the coordinate system used is shown in Fig. 2.

• The length of the hand-tool is set to be 0.1m, ltool =
0.1(m), and is held in the z-(vertical) direction,

• The desired endpoint force is along the axis of the hand-
tool, in the z-(vertical) direction, fdes

ep = [0, 0, 30](N).
The presented controller is tested on the simulated task. The
initial condition is set as: q20 = 50◦, and αi0 = 0.01% for
every muscle. A previously developed feedforward FES force
controller that does not take into account the arm stability
[16] is used as a baseline controller. Since the baseline
controller does not select an arm posture on its own, we
choose the posture qg that results in minimal amount of
gravitational potential energy along the null space of xdes

ep ,
as was done previously [15], and the vector of muscles
activations is then computed as follows

C =minimize
α

‖α‖2

subject to 0 ≤ αi ≤ 1

R(qg)
T [αfm

0 (qg)
]
= g(qg) + J(qg)

Tfdes
ep .
(13)

B. Analysis of the simulated task
The objective of achieving the desired force is encoded as

a hard constraint in both the baseline and proposed controller.
Therefore, if either controller is able to find solutions to its
individual optimization problem, it means the force control
objective is achieved correctly in computer simulation.

To demonstrate the ability of our proposed controller to
stabilize the arm posture while achieving the desired force,
we compute the eigenvalues of the summed joint stiffness
matrix, Ksum

J = K int
J +Kext

J , for both controllers

Ksum
J = VΛV−1, (14)
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Fig. 3. Comparison between the solutions found using the baseline and
proposed controller. (Top) the arm posture. The solid arm is the optimal arm
posture selected by the proposed controller (q2 = 24◦). The faded arm is
the posture with minimal gravitational potential energy used by the baseline
controller (q2 = 16◦). (Bottom) the pattern of muscle activations for the 16
muscle segments that can be stimulated by the FES neuroprosthesis.

where V = [v1, v2, ..., v5] whose i-th column vi ∈ R5×1 is
the i-th eigenvector of Ksum

J , and Λ = diag ([λ1, λ2, ..., λ5])
with λi the eigenvalue of Ksum

J corresponding to vi.
Moreover, the intrinsic (5) and external stiffness (8) of

both controllers are projected to the directions of the eigen-
vectors of the summed joint stiffness matrix, in order to
assess their contributions towards the stability of the arm

P int
i = Proji

(
K int

J

)
= vT

iK
int
J vi

P ext
i = Proji

(
Kext

J

)
= vT

iK
ext
J vi

(15)

where λi = P int
i + P ext

i .

C. Simulation results

Both the baseline and the proposed controller are able
to find solutions to their individual optimization problem,
however, different arm postures and patterns of muscle
activations are used. The optimal arm posture is found to be
q2 = 24◦ by the proposed controller, whose elbow is slightly
more elevated than the posture with minimal gravitational
potential energy that is used in the baseline controller (q2 =
16◦), as can be seen in Fig. 3(top). The patterns of muscle
activations are shown in Fig. 3(bottom), and it is obvious
that the two controllers use recognizably different patterns
of muscle activations to achieve the task.

Although at the expense of using higher muscle acti-
vations, our proposed controller clearly has the advantage
of achieving the stability of the arm. The cost (squared
sum of muscle activations) associated with our proposed

intrinsic external sum

-150
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0

50
baseline controller

1 2 3 4 5
-150
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-50

0

50

Pr
oj

(K
J)

index of eigenvector

proposed controller

Fig. 4. Comparison of the projections of individual stiffness
terms onto the directions of eigenvectors of Ksum

J . (Top) the result
of using the baseline controller. The five eigenvalues of Ksum

J are
[−138.70,−39.72, 14.28,−0.71,−4.64]. The third eigenvalue is positive,
indicating the instability of the corresponding eigenvector. (Bottom) the
result of using the proposed controller. The five eigenvalues of Ksum

J
are [−101.95,−42.43,−9.36,−5.44,−0.055]. All five eigenvalues are
negative, thus ensures the stability of all DoFs of the arm.

controller is 2.17, which is more than twice as large as
the baseline controller (cost = 1.03). However, our proposed
controller guarantees all five eigenvalues of the Ksum

J are
below zero, which ensures all five DoFs of the arm are
stable (Fig. 4(bottom)). Contrarily, one of the eigenvalues
of the Ksum

J using the baseline controller is greater than
zero, indicating the instability along that specific direction
of the corresponding eigenvector (Fig. 4(top)). If a joint
configuration perturbation is applied in this direction of the
eigenvector, the response force will be positive and causes
further displacement in this direction.

VI. DISCUSSION

The purpose of this study is to develop an FES controller
to restore the ability for paralyzed subjects to perform func-
tional interaction tasks. The development is accomplished
by incorporating a realistic arm stiffness/stability model to
a previously developed feedforward FES force controller,
and adding the stability of the arm as a control objective in
addition to achieving force control. Based on the results of a
simulated interaction task, namely the “pushing with a stick”
task, our proposed controller has shown to be effective in
ensuring the stability of the arm while achieving the objective
of force control. In contrast, the baseline controller fails to
stabilize the arm when achieving force control.

While our proposed controller have shown promising re-
sults in the simulated tasks, there are a number of limitations
that need to be considered. First, to reduce the kinematic
dimension to search in, in this study we fix the wrist joint
and constrain the palmar surface of the hand to be vertical.
These seem to be artificial and rather arbitrary constraints.
However, when performing interaction tasks, in particular
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those involving the usage of a hand-tool, there are typically
specific ways in which the tool works, which will post
additional kinematic constraints beyond merely specifying
the Cartesian location of the endpoint. These constraints can
be used to reduce of the dimension of kinematic redundancy,
in ways similar to the method used in this study. Also, there
can be additional ways to boost the speed of our proposed
controller. In this paper we only reduce the dimensions of
kinematic DoFs. However the dimensions of muscular DoFs
can potentially be reduced as well. It is possible to find
the muscular null space on which all points achieve the
objective of force control. Each basis of this muscular null
space indicates a specific pattern of muscle co-contractions.
The original problem of finding muscle activations can then
be reduced to finding the combination of these null space
bases that maximizes the stability of the arm, which will be
in a lower dimension than the original problem. Moreover,
the current controller depends on solving an optimization
problem online, which relies heavily on the computation
power and does not guarantee to find a feasible solution.
Recently, Ajoudani et al. [27] have developed an iterative
controller to solve the task of stiffness optimization, with
the stability of the controller analyzed. Similar approach
may be applied to our optimization problem, and has the
potential to achieve a real-time implementable controller for
the FES neuroprosthesis. Lastly, in this study we assume a
ball-and-socket connection between the endpoint of the arm
and the hand-tool. This seems to be a restrictive assumption,
as ball-and-socket connections only allow forces in directions
aligned with the tool. However, there is a wide range of
applications in daily life under this category, such as eating
with a fork (we generate downward force while keeping the
fork vertical), or tightening using a screwdriver (force applied
is aligned with the tool). The effects of tool kinematics as
well as its connection to the hand on the stiffness requirement
are discussed in detail by Rancourt and Hogan [28]. With
our proposed controller which directly takes into account the
stiffness and stability, we have the potential to restore the
abilities of using various types of tools and accomplishing
functional daily tasks using FES neuroprosthesis.
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