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Abstract—We present a method for controlling a neuropros-
thesis for a paralyzed human arm using functional electrical
stimulation (FES) and characterize the errors of the controller.
The subject has surgically implanted electrodes for stimulating
muscles in her shoulder and arm. Using input/output data, a
model mapping muscle stimulations to isometric endpoint forces
measured at the subject’s hand was identified. We inverted the
model of this redundant and coupled multiple-input multiple-
output system by minimizing muscle activations and used this
inverse for feedforward control. The magnitude of the total
RMS error over a grid in the volume of achievable isometric
endpoint force targets was 11% of the total range of achievable
forces. Major sources of error were random error due to trial-
to-trial variability and model bias due to nonstationary system
properties. Because the muscles working collectively are the
actuators of the skeletal system, the quantification of errors in
force control guides designs of motion controllers for multi-joint,
multi-muscle FES systems that can achieve arbitrary goals.

I. I NTRODUCTION

FUNCTIONAL electrical stimulation (FES) is a method to
restore lost function to persons with paralysis. Although

FES has had success in some applications [1–3], there remain
many challenges. Among these challenges is exploiting the full
capability of the musculoskeletal system to perform a wide
range of tasks. Complex movements such as reaching require
the coordination of multiple muscles acting across multiple
joints of the skeletal system.

Although controlling multiple muscles with FES potentially
provides flexible motor control, that potential has not yet been
fully realized. FES applications requiring multiple muscles
have generally used fixed muscle activation patterns. For
instance, the FreehandSystem R© [4] provides users control of
their hand but does so by having only a few stereotyped move-
ments. FES controllers for walking [5] and cycling [6] also
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use stereotyped movements. While controllers for stereotyped
movements have restored some function, there is clearly a need
for flexible control strategies that can achieve any arbitrary
goal subject to the constraints of the musculoskeletal system.

There are many challenges to address when designing
such a flexible FES controller with multiple muscles. First,
unlike typical serial-chain robotic manipulators, the control
of different degrees of freedom is not decoupled in human
limbs: muscles usually act across multiple degrees of freedom.
Further, with a large number of muscles needed for flexible
control, there are many redundant ways to achieve a given
task. Finally, with an increasing number of stimulated muscles,
there is a potential increase in the nonlinear interactions
between muscles due to current spillover and connective tissue
interactions between nearby muscles [7, 8]. The goal of the
present study is to design and evaluate a feedforward FES
controller for the production of flexible motor outputs that
addresses these potential challenges.

Previous studies have designed flexible FES controllers with
multiple muscles in order to produce limb movements [9, 10].
They use an optimization of effort or power consumption
to specify muscle activations as has been suggested in hu-
man motor control literature [11]. While these studies are
important in achieving the ultimate aim of restoring flexible
motions via FES, they offer only superficial understanding of
the many sources of error in multiple-muscle FES control.
Limb movements resulting from FES depend on the complex
nonlinear dynamics of the musculoskeletal system. Becauseof
this complexity, it is difficult to evaluate the contribution of
different sources of error to FES performance when measuring
limb movements.

In the present study, we evaluate the performance of a
flexible FES controller using multiple muscles to produce
isometric forces. This is an important preliminary step in
achieving flexible motion control. Since measuring isometric
forces avoids contributions of complex limb dynamics to
evoked motor outputs, we can readily evaluate the contribution
of different sources of error to FES performance. Another
study [12] investigates isometric force control of the thumb,
but does not thoroughly investigate the various sources of error
of the controller.

In particular, the goals of this study are to quantify the
total error in multi-muscle force control, quantify the relative
contributions of random error due to trial-to-trial variability
and of model bias to the total error, and to quantify the
contributions of different sources of model bias in multi-
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TABLE I
STIMULATION ELECTRODES USED

Electrode Placement Abbreviation Approximate Function Type Current Amplitude (mA) Max Pulse Width (µs)

1
Radial nerve

R4 Elbow extension Nerve cuff 0.8 47
Triceps fascicle

2
Axillary nerve

Ax Arm abduction Nerve cuff 2.1 50
Deltoid

3
Thoracodorsal nerve

Th Arm adduction Nerve cuff 0.8 25
Latissimus dorsi

4
Long thoracic nerve

LT Scapular abduction Nerve cuff 1.4 12
Serratus anterior

5
Musculocutaneous nerve

M1 Elbow flexion Nerve cuff 0.8 45
Biceps, brachialis

6
Suprascapular nerve

SS
Shoulder stability

Nerve cuff 1.4 15
Supraspinatus, infraspinatus Humeral rotation

7 Rhomboids Rh Scapular adduction Intramuscular 18.0 100

8 Lower pectoralis LPec Shoulder horizontal flexion Intramuscular 18.0 115

9 Upper pectoralis UPec Shoulder horizontal flexion Intramuscular 20.0 70

muscle force control. These results provide bounds on the
accuracy of the total force applied to the skeletal system by
mutliple muscles. These multi-muscle combinations are the
actuators that evoke movements of the skeleton. Understanding
sources of error at the muscle actuator level guides further
development of motion controllers.

Portions of this work have been reported previously in a
conference proceeding [13].

II. M ETHODS

In the first four subsections of Methods we describe
the experimental subject who participated in this study, the
input/output model that predicts the force at the subject’s
hand given stimulation inputs to the implanted muscles, a
method for identifying this subject-specific model, and the
design of an optimization-based feedforward controller based
on the identified model. The final three subsections of Methods
specifically address the main goals of the study. We describe
the experiments used to characterize the total error of the
controller over the space of achievable endpoint forces, the
experiments to quanitfy the relative contributions of random
error due to trial-to-trial variability and of model bias, and the
methods used to quantify the possible sources of model bias.

A. Subject

A 54-year-old female who sustained a hemisection of the
spinal cord at the C1-C2 level from a gunshot wound in
1994 participated in this study. She cannot move her right
arm, but she has some sensation and pain hypersensitivity.
She experiences hypertonia in some of her arm muscles.
More details on the subject are included in [14] (Subject 1).
Protocols used for research with this subject were approvedby
the internal review boards at Northwestern University (IRB

NO. STU00018382) and MetroHealth Medical Center (IRB
NO. 04-00014).

The subject has an implantable stimulator-telemeter [4,
15, 16] located in her abdomen for stimulating muscles in
her right arm and shoulder complex. The device has 12
leads that carry current to 12 stimulation electrodes. Three
of the leads are attached to intramuscular electrodes [17],
which are surgically implanted in muscles. The remaining
nine leads are attached to nerve cuff electrodes [18], each of
which is wrapped around a nerve that activates one or more
muscles. Three leads carry current to electrodes on the cuff
around the radial nerve, and two leads carry current to the
cuff around the musculocutaneous nerve. We only used one
stimulation electrode for each of these nerves leaving three of
the 12 stimulation electrodes unused. We refer to each muscle
or group of muscles stimulated by a single electrode as a
muscle group. In this experiment we used the nine muscle
groups shown in Table I. Fig. 1 shows the implanted system
and approximate locations of the stimulation electrodes. The
subject also has a second implanted device that controls wrist
and hand movements, but it was not used in this study.

Power and control signals are sent to the implanted unit
through the skin via an inductive radio-frequency link [4,
15, 16]. Stimulation to each muscle group used bi-phasic,
charge-balanced pulses delivered at 13 Hz. This frequency
was selected to produce reasonably fused contractions while
minimizing muscle fatigue. The stimulation amplitude was
fixed at a different level for each muscle group (see Table
I), while pulse duration could be varied between 0–200µs,
providing a means to control the force generated by each
muscle group. The maximum pulse width for each muscle
group was selected to prevent the subject from feeling pain,
to prevent spill over to activate other muscles, and when no
further force could be achieved with a larger pulse width.
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Fig. 1. The implanted stimulator-telemeter device with the12 stimulation
electrodes. A single wire is shown leading to the radial nerve which has three
electrodes, and a single wire is shown leading to the musculocutaneous nerve,
which has two electrodes, so only nine electrodes are visable in this figure. All
other electrodes are single-channel inputs. Nerve-cuff electrodes are marked
with green rectangles and green wires and intramuscular electrodes are marked
with red arrows and red wires.

B. Modeling Approach

Our model predicts the three-dimensional steady-state force
output measured at the hand, which we refer to as the endpoint
force, given a set of stimulation inputs to each muscle group.
The stimulation input to each muscle group is the pulse width
of the initial phase of the bi-phasic charge-balanced pulse. This
model was used to estimate the set of all achievable endpoint
forces and, through inversion, to determine the stimulation
inputs required to achieve a desired endpoint force.

During isometric conditions, there is a linear mapping
between muscle force and endpoint force. In contrast, the
stimulation-force properties of muscles are nonlinear. Combin-
ing these effects, we used a nonlinear mapping (1) to describe
the relationship between muscle stimulation inputsu ∈ R

9

and the endpoint forcef = [fx, fy, fz]
T,

f = A(q)g(u,q), (1)

where the directions of the three components off are shown
by the right-handed frame in Fig. 2. The arm configuration
q ∈ R

5 is the vector of three shoulder joint angles and two el-
bow angles. The configuration-dependent linear transformation
from muscle forces to endpoint forcesA(q) ∈ R

3×9 accounts
for the kinematic Jacobian of the arm and the moment arms of
the muscle groups about the joints. The columns ofA represent
the contributions of the individual muscle groups to each ofthe
three components of endpoint force at 100% stimulation. The
nonlinear mappingg(u,q) ∈ R

9 from each of the stimulation
inputs to each of the muscle forces is

g(u,q) = [g1(u1,q), g2(u2,q), . . . , g9(u9,q)]
T, (2)

wheregj(uj ,q) is the mapping from thej th stimulation input
to thej th muscle force. We refer to this mapping as the muscle
recruitment curve. In general,f , A, andg all depend on the
configuration of the armq, but for these isometric experiments
conducted at a single configuration we drop the dependence
on q and write

f = Ag(u). (3)

Fig. 2. Experimental setup and coordinate frame.

Note that (3) does not include dynamics as we studied only
steady-state endpoint forces, ignoring transients. Equation (3)
is time-invariant as we have taken care in the experiments to
prevent time-varying fatigue from playing a role.

We cannot directly measure the forces that the muscles
exert on the skeleton, so we use a proxy in definingg(u).
We definef̃j ∈ R as the magnitude of the endpoint force
when thej th input is stimulated. If the mapping from muscle
forces to endpoint force is linear, and we only stimulate one
muscle group, then the direction of the endpoint force is nearly
constant for different stimulation levels, and the magnitude
of the endpoint force is proportional to muscle force. In
preliminary trials, we verified that the force direction remained
approximately constant when increasing the stimulation level.
Since wecan measure the magnitude of the endpoint force
when stimulating the muscle groups individually, we use the
endpoint force magnitude in our model instead of the force
exerted on the skeleton by the muscle group.

The relationship between each stimulation input and the
corresponding magnitude of the endpoint force outputf̃j
is nonlinear. We chose a sigmoid function to model this
relationship because it is nonlinear and monotonic,

f̃j =
aj

1 + ebj(cj−uj)
−

aj

1 + ebjcj
, (4)

where for thej th muscle group,aj ∈ R is the maximum output
of the sigmoid function,bj ∈ R is proportional to the slope
of the sigmoid function at 50% of the maximum output, and
cj ∈ R is the input at which the sigmoid function outputs
50% of its maximum output. The second term on the right-
hand side forces the output to be zero when the input is zero.
We then normalizẽfj by the endpoint force magnitude when
the maximum stimulation pulse width is applied. Equation (3)
uses this normalized value forgj(uj). We normalize so that
eachgj(uj) ∈ [0, 1] and represents muscle activation.

Next we exlain how to identifyaj , bj , and cj for each
muscle group andA for the arm configuration tested.

C. Model Identification Experiments

The model identification experiments took place on Day 1 of
two days of testing. The subject’s right forearm was strapped
into a cast rigidly attached to a force sensor (JR3 Model
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Fig. 3. Example of raw data collected (a) from stimulation ofthe radial nerve, which causes elbow extension, to derive anisometric force recruitment curve
(b): In (a) the muscle group is stimulated at increasing stimulation levels. Stimulation starts at 0 s and ends at 1 s. The average force over the last half second
for each stimulation level is plotted against the stimulation level in (b), and a sigmoid curve is fit to the data points. Note that (a) shows only active forces
due to stimulation of the muscle group. It does not include passive effects such as gravity or muscle stiffness.

67M25A3-I40) as shown in Fig. 2. The subject’s arm was
at approximately 45 degrees of shoulder elevation measured
in a vertical plane rotated by 70 degrees from the coronal
plane, 55 degrees of shoulder internal rotation, 90 degrees
of elbow flexion, and zero forearm pronation/supination. We
chose this configuration (q in (1)) because it is useful in
everyday tasks and a configuration for which we expected
the arm to exert significant endpoint forces in each of the
measurement directions.

To identify the model described by (3) and (4) we used a
method similar to the steady-state step response method [19].
We stimulated each muscle group at discrete stimulation pulse
widths and recorded the resulting steady-state endpoint force.
We used a fixed transformation from the sensor coordinate
frame to the coordinate frame at the third knuckle of the hand
shown in Fig. 2.

Each of the nine muscle groups was stimulated at constant
pulse widths of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, and 100% of its maximum pulse width for a total of
90 stimulation trials. A five second rest period followed each
one second stimulation. The order of muscle groups stimulated
and pulse width levels was randomized. The experiment was
separated into ten blocks of nine different muscle groups
per block, so each muscle group was only stimulated once
during each 54-second block. This allowed each muscle group
sufficient time to rest before stimulation in the next block.

An example of evoked force vs. time for the ten trials
for a muscle group is shown in Fig. 3(a). Each point on
the recruitment curve (Fig. 3(b)) is the difference between
the force magnitude averaged over the last half second of
stimulation and the force magnitude averaged over the second
before stimulation began. Subtracting the force measured
before stimulation begins makes this a model for the active
steady-state force generated by stimulating a muscle groupand
eliminates passive effects such as gravity or muscle stiffness.
Generally the force magnitudes in Fig. 3(a) plateau after 0.5
seconds of stimulation. Fluctuations in the force magnitude
for 60%, 80%, and 100% stimulation are due to movement
that results from breathing. The model treats these fluctuations

as noise. Maximum likelihood was used to estimate the
parametersaj , bj, andcj for each recruitment curve.

Because we stimulated the muscle groups one-by-one, we
solved for each column ofA in (3) separately. This was done
by a linear least squares fit with no intercept term,

Aj = Fj g̃j
† (5)

where Aj ∈ R
3×1 is the column ofA corresponding to

the j th muscle group (Fig. 4),Fj ∈ R
3×10 is the matrix of

endpoint force vectors (ten vectors, one for each stimulation
level) corresponding to thej th muscle group,g̃j ∈ R

1×10

is a vector of normalized force magnitudes (one for each
stimulation level) corresponding to thej th muscle group, and
g̃j

† is the Moore-Penrose pseudo-inverse ofg̃j.

D. Feedforward Controller

Using the identified model, we developed a feedforward
controller that determines the stimulation inputs that will
produce a desired active endpoint force.

Given a target forcef t, the controller inverts the model
identified above to compute the stimulation inputsu to be ap-
plied to the arm. Because the system is redundant, there is not
a unique solution of (3) forg(u). To resolve the redundancy
we minimize the sum of squares of muscle activations subject
to the constraints that the model-predicted force equals the
target force and that the activations are between zero and one:

minimize: ||g(u)||22
subject to: Ag(u) = f t

gj(uj) ∈ [0, 1] ∀j.
(6)

Having obtained the activationsg(u) required to achieve the
target endpoint force, the controller inverts the recruitment
curve (4) to find each required stimulation inputuj . There is
evidence that the healthy nervous system uses this minimum
activation strategy [11].

E. Total Error in Multi-Muscle Force Control

We evaluated the accuracy of our controller using a grid
of evenly-spaced endpoint force targets over the 3D range
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Fig. 4. Graphical description ofA in (3): each vector originating from
the subject’s hand represents the magnitude and direction of the force at the
subject’s hand when stimulating the corresponding muscle group at 100%.
Each vector is a column ofA. Only six muscle groups are labelled in the
view on the right because of space considerations. SS is not visable in the
view on the right because it has very smallfy andfz components. The black
rings bound the set of achievable endpoint forces in each plane.

of achievable forces. To determine the range of achievable
endpoint forces we assumed that each muscle group acts
independently, and can produce a set of forces defined by
the line segment between zero and the maximum 3D force
measured during the characterization of its recruitment curve.
The set of all achievable forces is then the Minkowski sum
of the nine sets of achievable forces of the individual muscle
groups. The “volume” of achievable forces is a convex region
and can be seen in 2D slices (Fig. 5).

We constructed a grid of targets (Fig. 5) in the [fx, fy, fz]
space with 4.5 N spacing to fill the volume of achievable
endpoint forces. Controller performance trials were conducted
on two separate days with 48 hours of rest between sessions.
This resulted in 69 targets on Day 1 and 66 new targets on
Day 2 for a total of 135 unique endpoint force targets. The
orientation of [fx, fy, fz] coordinate systems in which the
targets were computed were different from one day to the next.
On Day 1 the order of targets was randomized and divided into
three blocks. The Day 2 targets were randomized in two equal
blocks. The blocks were run in succession with a short period
for data logging between blocks. One trial was run for each
target.

Each trial consisted of stimulating the muscle groups
corresponding to the desired target for one second followedby
30 seconds of rest to limit any effects of fatigue. The measured
steady-state force, which was the mean force output over the
final 0.5 s of stimulation, was recorded. We computed the
error, which is the difference between the predicted and mea-
sured steady-state force output, for each target and computed
the root-mean-square (RMS) error over all targets.

F. Random Error and Bias in Multi-Muscle Force Control

To estimate the relative contributions of random error and
bias to the total error, we ran several repeated trials at
five different endpoint force targets spanning much of the
achievable force space (Fig. 8). On Day 1 a single target
(Target 1) was repeated 10 times. On Day 2 four additional

fx

fy

3 N

fz

fy

scale

endpoint force target

Fig. 5. Target forces in controller performance experiments: Black circles
represent targets in thexy andyz planes in endpoint force space. If a vector
were drawn from the subject’s hand to each black circle, thatvector represents
the direction and magnitude of the target force. The black rings bound the set
of achievable endpoint forces in each plane.

targets (Targets 2–5) were repeated 15 times each. On Day 2
the trials for the first two targets were run in random order in
one block and the trials for the last two targets were then run
in random order in a second block. The timing of stimulation
and rest were the same as in the previous subsection.

Random error was quantified for each target by computing
the covariance of the measured 3D force for the repeated trials
and reporting the square root of the largest eigenvalue. This
represents the standard deviation of the force in the direction
of largest variance. Bias error was computed as the difference
between the target and the mean of the measured force over
the repeated trials at each target.

G. Sources of Model Bias in Multi-Muscle Force Control

Our results indicated that bias errors were larger than
random errors for our controller. We therefore investigated
three possible sources of the observed bias. The first potential
source is due to system nonstationarity present between the
system identification experiments on Day 1 and the subsequent
controller performance experiments on Days 1 and 2. Possible
sources of nonstationarity include fatigue or experimental
outliers associated with nonstationary events such as muscle
spasms or postural changes during the system identification
process. The second possible source of bias is nonlinear
interactions between muscle groups, which are not considered
in our model (3). These may arise from current spillover or
force transmission between muscle groups. The third source
of bias is poor model fits due to an insufficient amount of data.

To evaluate the effects of nonstationarities we refit our linear
model mapping muscle activations to endpoint forces to the
controller performance experiment data. Then we compared
the refit model’s ability to predict endpoint forces to that of
the model that was fit to the original system identification data.
The parameters of the model (A in (3)) were identified using
data from 100 trials randomly-selected from the data set of 135
trials, and the model’s performance was evaluated on 30 other
randomly-selected trials. The superior performance of therefit
model, if any, indicates differences between the original sys-
tem identification data set and the controller performance data.
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For instance, if muscle properties changed between the sys-
tem identification experiments and the controller performance
experiments, the new refit model should perform better. We
attribute these differences to nonstationary system properties.

The process for refitting the model to the controller perfor-
mance experiment data was as follows. As the controller per-
formance experiment data includes no information on muscle
groups stimulated individually, we could not directly recom-
pute recruitment curves. To indirectly recompute recruitment
curves we fit a Gaussian process model (GPM) [20], which
is a nonlinear function approximator, to the entire 135 data
point set. Using the GPM we created simulated single muscle
group data and computed recruitment curves based on the
simulated data. Given stimulation inputs from the controller
performance experiment data, we computed the corresponding
muscle activations using the recomputed recruitment curves.
We then refit our linear model (3) to 100 randomly-selected
trials and evaluated its predictions for 30 other randomly-
selected trials.

This cross-validation process was repeated 1000 times,
yielding 1000 new linear models. To quantify the effects of
nonstationarities we compared the mean RMS error over these
models to the error in the controller performance experiment.

To evaluate the effects of nonlinear interactions, we fit
Gaussian process models to the same data sets that were used
to refit the linear models, yielding 1000 GPMs. The GPMs
predict the endpoint force given the muscle activation. If the
GPM, which can capture a wide range of nonlinear interactions
between muscles, predicts endpoint forces better than the
linear model, it would suggest that nonlinear interactions
between muscles significantly affected controller performance.
We used the same cross-validation process for the GPMs as
was described for the linear models and compared the average
RMS error of the GPM models to the average RMS error of the
linear models to evaluate the effects of nonlinear interactions.

Finally, the influence of the amount of data available for
fitting the model parameters was assessed by repeating the
fitting process with randomly selected data sets having 20, 30,
40, 50, 60, 70, 80, 90, and 100 data points. This process was
performed for both the GPM model and the re-estimated linear
model, and performance of each model was cross-validated

fx fy fz f
2

fx fy fz f
2

error (N) achievable range (N)

2.3

46.5

16.2

42.3

26.5

5.24.1
2.2

Fig. 7. RMS errors in endpoint force compared to the range of achievable
endpoint forces over both days of controller performance experiments.

using 30 randomly selected trials not used to fit the model.
This process was repeated 1000 times for each size data set.

We trained Gaussian process models using the GPML
toolbox [21] forMATLAB R©. Our GPMs used a zero mean
function, a squared exponential covariance function, and a
Gaussian likelihood function. The model’s hyperparameters —
the input length scale, the output covariance and the noise level
— were determined by maximizing the marginal likelihood of
the data, which balances fitting the data well with avoiding
model complexity.

III. RESULTS

A. Total Error in Multi-Muscle Force Control

The results of a typical controller performance trial are
shown in Fig. 6. Shortly after stimulation began the measured
force began to rise and eventually oscillated around a steady-
state value. When stimulation ended, the measured force
returned close to its pre-stimulation level. Similar trials were
conducted with targets over the entire space of achievable
endpoint forces.

The magnitude of RMS error of the controller over the
135 evenly-spaced targets was 5.2 N or 11% of the range
of achievable endpoint forces (Fig. 7). The largest RMS error
was in the vertical (z) direction. The error was 4.1 N or 26%
of the range of achievable vertical forces. The results were
similar over both days of testing as the magnitude of RMS
error on Day 1 was 5.3 N and on Day 2 was 5.1 N.

The largest errors occurred when undershooting targets in
the vertical (z) direction. This means that muscle groups
producing force in the vertical direction did not produce as
much force as the identified model predicted. The largest
errors coincided with stimulation of lower pectoralis and the
thoracodorsal nerve which were the primary producers of
vertical force at this arm pose (see Fig. 4). The reasons for
these errors are discussed further in Section IIIC.

B. Random Error and Bias in Multi-Muscle Force Control

The total error reported above reflects both errors due to
bias in the feedforward controller and random errors due to
variability of force production across trials. We evaluated the
contributions of these different sources of error by running
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Fig. 8. Scatter plots of repeated controller performance experiments in thexy
plane (left) and theyz plane (lower right): Large closed symbols represent
the endpoint force targets, and smaller open symbols represent the actual
endpoint force measured in repeated experiments. If a vector were drawn
from the subject’s hand to each symbol, that vector represents the direction
and magnitude of the target force for a large closed symbol orthe measured
force for a smaller open symbol. The black rings bound the setof achievable
endpoint forces in each plane. Target 1 was tested on Day 1, and the other
four targets were tested on Day 2.

repeated trials for five different endpoint force targets.
Errors due to model bias were larger than errors due to trial-

to-trial variability. The forces observed on repeated control
trials attempting to produce five different force targets are
shown in Fig. 8. For each target, each of the repeated trials
used the identical muscle stimulation pattern. As can be seen
in the figure, the desired force and the distribution of forces
actually produced for each target are different. These errors
due to bias ranged between 2.3–6.0 N (RMS), corresponding
to 5–13% of the total range of achievable endpoint forces.
The random error due to trial-to-trial variability, as measured
by the distribution of measured forces for each target, was
relatively smaller, ranging between 0.9 to 1.6 N, or 2–3% of
the total range of achievable endpoint forces.

C. Sources of Model Bias in Multi-Muscle Force Control

Because model bias errors were larger than random errors
we further investigated the sources of model bias. We
quantified model bias due to nonstationary system properties,
nonlinearity of muscle interactions, and the use of limited
data in system identification.

To estimate model bias due to nonstationary system
properties, we re-estimated our model 1000 times using
different randomly-selected trials from the controller
performance experiments. We compared the average RMS
error of the refit models to the RMS error of the original
controller.

Re-estimating the model reduced the magnitude of the
total RMS error to 2.7 N or 2.5 N less than the error of
the original model. We attribute this 2.5 N difference to
nonstationary system properties. The error in the vertical
force component was reduced to 1.1 N, or 3.0 N less than
the vertical component of the error of the original model.
This demonstrates that the systematic undershoot mentioned
in Section IIIA was greatly reduced using the re-estimated
model. Smaller error reductions were observed in the two

Fig. 9. Sources of error in multi-muscle endpoint force control. 1000 linear
models and 1000 GPMs were fit to randomly-selected test sets from the
controller performance data set for increasing numbers of data points in the
test set. The average RMS error of the models in predicting endpoint forces
for data not in the test set is represented by blue circles forthe linear models
and red circles for the GPMs. The error bars represent two standard deviations
away from the average of the 1000 models. The solid horizontal black line
represents the RMS error of the controller that used the model identified on
90 data points prior to the controller performance experiments.

horizontal directions. Almost all parameters in the refit linear
models were significantly different than those originally
identified for every muscle group.

Despite nonstationarity in all muscle groups, especially
large errors coincided with stimulation of lower pectoralis as
mentioned in Section IIIA. The decrease in error with the refit
models was primarily in the vertical direction to which the
lower pectoralis contributed significantly. The reason forthis
is that the nonstationarity in the lower pectoralis recruitment
curve occurred at a stimulation level that was very frequently
used. The range of stimulation of other muscle groups was
more uniform during the controller performance experiments,
so the effects of nonstationarity were diminished.

We found that there was only a modest reduction in
error when the second source of model bias — nonlinear
interactions between muscle groups — was considered. To
show this we fit a Gaussian Process Model (GPM) to each
of 1000 data sets randomly selected from the controller
performance experiment data. A GPM can account for
nonlinearities as detailed in Section IIG. The average RMS
error of these 1000 GPMs was compared to the average
RMS error of the 1000 linear models described above. The
reduction in average RMS error was from 2.7 N using the
linear model to 2.4 N using the nonlinear GPM (Fig. 9).
The difference between the average RMS error of the GPMs
and the average RMS error of the linear models was not
statistically significant (see error bars in Fig. 9). This small
improvement when using the nonlinear GPM suggests that
the forces produced by individual muscle groups combined
approximately linearly during the controller performance
experiments.

Finally, we examined the consequences of estimating
models using limited amounts of data. As shown in Fig.
9, the prediction error steadily decreased with increasing
numbers of data trials used to identify the model, up until
approximately 40 data points were used. There were minimal
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improvements in model predictions as data sets were increased
beyond this number for models allowing either linear or
nonlinear interactions between muscles.

IV. DISCUSSION

The goal of this research was to quantify the errors in
force productioin associated with using FES to control multi-
ple muscles in the human arm. To eliminate complications
associated with modeling the relationship between muscle
forces and the resulting motions of a multiple-degree-of-
freedom limb, we considered only isometric force generation
and an empirically determined linear mapping between the
forces generated by each muscle and those measured at the
endpoint of the arm. This approach allowed us to quantify
the total error associated with multiple muscle control andto
estimate the contributions that could be attributed to nonlinear
interactions between muscles, nonstationary system properties,
model biases resulting from the use of limited data during the
estimation process, and random errors.

Quantifying errors in isometric force control is a neccessary
step toward motion control of multiple joints. The multi-
muscle system applies forces that produce torques accross
multiple joints. The endpoint force we measured is linearly
related to torques about the joints of the arm. In quantifying
the error in endpoint force relative to the total range of force
output, we quantify the expected errors in joint torques relative
to the range of possible joint torques. We have quantified the
steady-state accuracy of the torque actuators of our system.
This is especially useful in using well-known robot arm
control strategies which typically command torques to produce
desired motions. For instance, in designing a controller where
torques are commanded, the expected uncertainty in the torque
command can be propogated through a simulation model to
predict errors in the motion of the arm.

Our work in isometric force control does not address some
factors that may contribute to errors in motion control. We
intentionally did not consider the nonlinear dynamics of the
skeletal system in order to isolate the effects of muscle force
production. Our steady-state analysis also did not consider
the dynamics of the muscles themselves. Identifying subject-
specific models of the muscle dynamics and skeletal dynamics
are critical future steps that will build on our current investi-
gation of isometric force generation by mutliple muscles.

The remainder of the discussion focuses on the specific
findings of this study. We found that nonlinear interactions
between muscles made only modest contributions to the total
error of the controller, while random error and errors due to
nonstationary system properties had more substantial contri-
butions. We discuss each of these results and their potential
implications to the design of FES controllers below.

A. Nonlinear Interactions Between Muscles

The finding of minimal contribution of nonlinear interac-
tions between muscles was somewhat surprising as there is
evidence to suggest nonlinear interactions exist [7, 8]. This
result suggests that nonlinearities due to current spillover

to adjacent muscles or due to connective tissue interactions
between muscles have minimal effect on force production by
multiple muscles. A minimal effect of nonlinear interactions
between muscles was recently described in similar studies
performed in the rat [22].

The finding that muscle forces add linearly in a human
FES system greatly simplifies the design of FES controllers.If
nonlinear interactions were present, more complicated models
of force production would be required, significantly increasing
the complexity of FES controller design. Note that we selected
the range of stimulation pulse widths to explicitly avoid cur-
rent spillover. Further, nonlinear connective tissue interactions
between muscles might become more significant at extreme
limb configurations, or during more dynamic conditions not
considered in these experiments.

B. Errors Due to Nonstationary System Properties

A large source of error in our experiments was due to differ-
ences between the forces produced by muscle groups during
the initial system identification experiments and during the
controller performance experiments. When these differences
were accounted for, the total error was reduced by almost
50%. These errors imply that the system was nonstationary.
Contributions to this behavior could arise from outliers during
the initial system identification data collection process,such
as those arising from muscle spasms in patients with SCI,
changes in stimulation history, fatigue, or significant random
errors between trials. It is difficult to evaluate if such nonsta-
tionarities would be expected consistently for FES controllers,
because of the limited data available for these experiments.
Nonetheless, these results do emphasize the importance of
tracking changes in the muscle response to stimulation over
time to improve FES controller performance. Such changes
might be corrected directly using adaptive control strategies
or accounted for more indirectly using robust feedback con-
trollers.

C. Random Error due to Trial-to-Trial Variability

Trial to trial variability contributed approximately 1.6/5.2
N (30%) of the total error. If the errors due to any nonlinear
interactions and changes in estimated muscle properties are
accounted for, trial-to-trial variability contributed 1.6/2.5 N
(64%) of the total error. This random error might in part
be due to nonstationarities in the physiological state of the
musculoskeletal system during the period of the controller
performance trials. This could arise from fatigue, changesin
arousal, reflexes, or muscle spasms.

In addition to these physiological sources, it is also possible
that some of this random error was due to measurement error.
As seen in the raw data trial of Fig. 6, there were considerable
fluctuations in the forces that were measured, due in part to
the patient’s respiration. Because of the likely contributions
of such measurement errors, it is likely that the random error
observed here was an overestimate of the true variability of
force production during FES and should be considered as an
upper bound on the amount of random error.
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D. Conclusions

The results of this study describe the performance of a
feedforward FES controller for the production of flexible mo-
tor outputs in humans. We demonstrated the contributions of
different sources of error to the performance of this controller,
showing a minimal effect from nonlinear interactions between
muscles but greater effects from errors due to nonstationary
system properties and from trial-to-trial variability.

Although we were able to account for a substantial portion
of the observed errors in FES performance, it is important
to note that some unexplained, residual error was observed.
If we consider that 0.9–1.6 N of the total error of 2.4
N for the nonlinear GPM model was due to trial-to-trial
variability, then there remains approximately 0.8–1.5 N of
error that we have not accounted for. This residual error
might reflect physiological processes, such as muscle fatigue
during the controller performance experiments, which were
not evaluated systematically in these experiments. It therefore
remains possible that the error observed here for feedforward
FES control could be reduced further if this residual error
could be accounted for and incorporated into the controller.

It is clear that any practical FES system will need to include
some form of feedback control to compensate for errors in
force production, but it is unclear at what level this feedback
should occur. Feedback can be provided at the highest level by
the user, who is able to grade the level of stimulation through
the user interface [23, 24]. Alternatively, automatic feedback
control may be used to correct errors in the output [9, 10],
which could be the position of the hand or the joint angles of
the arms. Automatic feedback could also be used at the muscle
actuator level to correct errors in force and torque [25].

The results of the present study provide important infor-
mation on the characteristics of the internal errors that need
to be considered when designing a feedback controller for a
high-degree-of-freedom system such as the human arm.
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