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Abstract—We present a method for controlling a neuropros-
thesis for a paralyzed human arm using functional electrich
stimulation (FES) and characterize the errors of the contrdier.
The subject has surgically implanted electrodes for stimudting
muscles in her shoulder and arm. Using input/output data, a
model mapping muscle stimulations to isometric endpoint frces
measured at the subject’s hand was identified. We inverted th
model of this redundant and coupled multiple-input multiple-
output system by minimizing muscle activations and used tlsi
inverse for feedforward control. The magnitude of the total
RMS error over a grid in the volume of achievable isometric
endpoint force targets was 11% of the total range of achievde
forces. Major sources of error were random error due to trial-
to-trial variability and model bias due to nonstationary system
properties. Because the muscles working collectively areheé
actuators of the skeletal system, the quantification of erns in
force control guides designs of motion controllers for muli-joint,
multi-muscle FES systems that can achieve arbitrary goals.

I. INTRODUCTION

use stereotyped movements. While controllers for stepsaty
movements have restored some function, there is clearlga@ ne
for flexible control strategies that can achieve any arbjtra
goal subject to the constraints of the musculoskeletakgyst
There are many challenges to address when designing
such a flexible FES controller with multiple muscles. First,
unlike typical serial-chain robotic manipulators, the toh
of different degrees of freedom is not decoupled in human
limbs: muscles usually act across multiple degrees of treed
Further, with a large number of muscles needed for flexible
control, there are many redundant ways to achieve a given
task. Finally, with an increasing number of stimulated nhessc
there is a potential increase in the nonlinear interactions
between muscles due to current spillover and connectisedis
interactions between nearby muscles [7, 8]. The goal of the
present study is to design and evaluate a feedforward FES
controller for the production of flexible motor outputs that
addresses these potential challenges.

UNCTIONAL electrical stimulation (FES) is a method to Previous studies have designed flexible FES controllets wit

restore lost function to persons with paralysis. Althoughnultiple muscles in order to produce limb movements [9, 10].
FES has had success in some applications [1-3], there remE@y use an optimization of effort or power consumption
many challenges. Among these challenges is exploitinguie fto specify muscle activations as has been suggested in hu-
capability of the musculoskeletal system to perform a wid®an motor control literature [11]. While these studies are
range of tasks. Complex movements such as reaching requfipgortant in achieving the ultimate aim of restoring fleribl
the coordination of multiple muscles acting across mudtipmotions via FES, they offer only superficial understandifig o

joints of the skeletal system.

the many sources of error in multiple-muscle FES control.

Although controlling multiple muscles with FES potentyall Limb movements resulting from FES depend on the complex

provides flexible motor control, that potential has not yegto

nonlinear dynamics of the musculoskeletal system. Becaluse

fully realized. FES applications requiring multiple mues! this complexity, it is difficult to evaluate the contributicof _
have generally used fixed muscle activation patterns. F@ifferent sources of error to FES performance when meagurin

instance, the Freeharsgstem

[4] provides users control of limb movements.

their hand but does so by having only a few stereotyped moven the present study, we evaluate the performance of a
ments. FES controllers for walking [5] and cycling [6] alsdlexible FES controller using multiple muscles to produce
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isometric forces. This is an important preliminary step in
achieving flexible motion control. Since measuring isoigetr
forces avoids contributions of complex limb dynamics to
evoked motor outputs, we can readily evaluate the contabut
of different sources of error to FES performance. Another
study [12] investigates isometric force control of the thym
but does not thoroughly investigate the various sourcesrof e
of the controller.

In particular, the goals of this study are to quantify the
total error in multi-muscle force control, quantify theatle
contributions of random error due to trial-to-trial varilétly
and of model bias to the total error, and to quantify the
contributions of different sources of model bias in multi-
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TABLE |
STIMULATION ELECTRODES USED

Electrode Placement Abbreviation Approximate Function pely Current Amplitude (mA)  Max Pulse Width:$)

1 Badlal nerve R4 Elbow extension Nerve cuff 0.8 a7
Triceps fascicle

Axillary nerve

. AX Arm abduction Nerve cuff 2.1 50
Deltoid

3 Thorgco.dorsal ne'rve Th Arm adduction Nerve cuff 0.8 25
Latissimus dorsi

Long thoracic nerve

4 ) LT Scapular abduction Nerve cuff 1.4 12
Serratus anterior
Mus?ulocutaneogs ‘nerve M1 Elbow flexion Nerve cuff 0.8 45
Biceps, brachialis
Suprfiscapulgr ner\(e ss Shoulder Stablllt¥ Nerve cuff 14 15
Supraspinatus, infraspinatus Humeral rotation
7 Rhomboids Rh Scapular adduction Intramuscular 18.0 100
8 Lower pectoralis LPec Shoulder horizontal flexion  Intracuwlar 18.0 115
9 Upper pectoralis UPec Shoulder horizontal flexion  Intracular 20.0 70

muscle force control. These results provide bounds on thi®. STU00018382) and MetroHealth Medical Center (IRB
accuracy of the total force applied to the skeletal system BO. 04-00014).

mutliple muscles. These multi-muscle combinations are theThe subject has an implantable stimulator-telemeter [4,
actuators that evoke movements of the skeleton. Undeiis@ndl5, 16] located in her abdomen for stimulating muscles in
sources of error at the muscle actuator level guides furtheer right arm and shoulder complex. The device has 12

development of motion controllers. leads that carry current to 12 stimulation electrodes. &hre
Portions of this work have been reported previously in @ the leads are attached to intramuscular electrodes [17],
conference proceeding [13]. which are surgically implanted in muscles. The remaining
nine leads are attached to nerve cuff electrodes [18], ehch o
II. METHODS which is wrapped around a nerve that activates one or more

. : . muscles. Three leads carry current to electrodes on the cuff
In the first four subsections of Methods we describe :

. . " . . around the radial nerve, and two leads carry current to the
the experimental subject who participated in this studg, th
. . ” _cuff around the musculocutaneous nerve. We only used one
input/output model that predicts the force at the subjects. : ’

. . S . stimulation electrode for each of these nerves leavingetbfe
hand given stimulation inputs to the implanted muscles,

method for identifying this subject-specific model, and thteﬁe 12 stimulation electrodes unused. We refer to each muscl

design of an optimization-based feedforward controlleseol orug(r:(l)éjp r(())fumulrswdti?s S;Tlgﬁ:r?;tb zv: usgr;g(;jletheéleﬁit:;d%jssd:
on the identified model. The final three subsections of Methog! group. P

specifically address the main goals of the study. We descripe. P> ShO\.Nn n Tablg . Fig. 1 ShO.WS th? implanted system
’ . nd approximate locations of the stimulation electroddse T
the experiments used to characterize the total error of e

controller over the space of achievable endpoint forces, t}%UbJeCt also has a second implanted device that controg wri

. ' . . and hand movements, but it was not used in this study.
experiments to quanitfy the relative contributions of ramd Power and control sianals are sent to the imolanted unit
error due to trial-to-trial variability and of model bias)chthe g P

: . through the skin via an inductive radio-frequency link [4,
methods used to quantify the possible sources of model bli\ ~16]. Stimulation to each muscle group used bi-phasic,

charge-balanced pulses delivered at 13 Hz. This frequency

A. Subject was selected to produce reasonably fused contractiong whil
A 54-year-old female who sustained a hemisection of tHBinimizing muscle fatigue. The stimulation amplitude was

spinal cord at the C1-C2 level from a gunshot wound ifixed at a different level for each muscle group (see Table
1994 participated in this study. She cannot move her right while pulse duration could be varied between 0-260
arm, but she has some sensation and pain hypersensitipviding a means to control the force generated by each
She experiences hypertonia in some of her arm musclégiscle group. The maximum pulse width for each muscle
More details on the subject are included in [14] (Subject 19roup was selected to prevent the subject from feeling pain,
Protocols used for research with this subject were apprbyedto prevent spill over to activate other muscles, and when no
the internal review boards at Northwestern University (IRBArther force could be achieved with a larger pulse width.
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Fig. 1. The implanted stimulator-telemeter device with ft#estimulation Fig. 2. Experimental setup and coordinate frame.

electrodes. A single wire is shown leading to the radial eavhich has three

electrodes, and a single wire is shown leading to the musetdaeous nerve,

which has two electrodes, so only nine electrodes are \@salihis figure. All . . .

other electrodes are single-channel inputs. Nerve-cefitaldes are marked Note that (3) does not include dynamics as we studied only

With green rectangles and green wires and intramusculetreties are marked steady-state endpoint forces, ignoring transients. E(qmz@ﬁ)
with red arrows and red wires. is time-invariant as we have taken care in the experiments to
prevent time-varying fatigue from playing a role.

We cannot directly measure the forces that the muscles
) _ _ exert on the skeleton, so we use a proxy in defingig).

Our model predicts the three-dimensional steady-statefofye definef; € R as the magnitude of the endpoint force
output measured at the_ hand_, Wh_ich we refer to as the endp@ien the;t input is stimulated. If the mapping from muscle
force, given a set of stimulation inputs to each muscle groygces to endpoint force is linear, and we only stimulate one
The stimulation input to each muscle group is the pulse widjyscle group, then the direction of the endpoint force islgea
of the initial phase of the bi-phasic charge-balanced pdls&s  constant for different stimulation levels, and the magghitu
model was used to estimate the set of all achievable endpgjptthe endpoint force is proportional to muscle force. In
forces and, through inversion, to determine the stimutatigyreliminary trials, we verified that the force direction raimed
inputs required to achieve a desired endpoint force. _ approximately constant when increasing the stimulatiorlle

During isometric conditions, there is a linear mappingjnce wecan measure the magnitude of the endpoint force
between muscle force and endpoint force. In contrast, tigen stimulating the muscle groups individually, we use the
stimulation-force properties of muscles are nonlineam@in- endpoint force magnitude in our model instead of the force
ing these effects, we used a nonlinear mapping (1) to descriyarted on the skeleton by the muscle group.

B. Modeling Approach

the relationship between muscle sgimulation inputss R The relationship between each stimulation input and the
and the endpoint forcé = [f., fy, f2]", corresponding magnitude of the endpoint force outgpt
f— A(q)e(u,q) @ is nonlinear. We chose a sigmoid function to model this

relationship because it is nonlinear and monotonic,

where the directions of the three componentd afre shown _ a; a;
by the right-handed frame in Fig. 2. The arm configuration fi= 1+ ebilci—us) 14 ebici’ (4)
q € R? is the vector of three shoulder joint angles and two el- h _ )
bow angles. The configuration-dependent linear transfoma WNere for thej™ muscle groupg; € R is the maximum output
from muscle forces to endpoint forceq) € R3*° accounts of the s_|gmo.|d funct_|onbj eRis proportlonal to the slope
for the kinematic Jacobian of the arm and the moment armsQfthe sigmoid function at 50% of the maximum output, and
the muscle groups about the joints. The columnd oépresent ¢ € R iS the input at which the sigmoid function outputs

. . . .. 0, i i i -
the contributions of the individual muscle groups to eacthef 20% Of its maximum output. The second term on the right

three components of endpoint force at 100% stimulation. THENd side forces the output to be zero when the input is zero.
nonlinear mapping(u, q) € R? from each of the stimulation W& then normalizef; by the endpoint force magnitude when
inputs to each of the muscle forces is the maximum stimulation pulse width is applied. Equation (3
uses this normalized value far; (u;). We normalize so that
g(u,q) = [91(u1,9),92(u2,qQ), ..., go(ug, q)]", (2) eachg;(u;) € [0,1] and represents muscle activation.
Next we exlain how to identifya;, b;, andc; for each

; i th ot an i \ X
wheregﬁ- (uj,q) is the mapping from thg™ stimulation input 1 ,scle group andt for the arm configuration tested.
to the;™ muscle force. We refer to this mapping as the muscle

recruitment curve. In generaf, A, andg all depend on the

configuration of the army, but for these isometric experiments<C. Model Identification Experiments

conducted at a single configuration we drop the dependencehe model identification experiments took place on Day 1 of

on q and write two days of testing. The subject’s right forearm was strappe
f = Ag(u). (3) into a cast rigidly attached to a force sensor (JR3 Model
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Fig. 3. Example of raw data collected (a) from stimulatiortted radial nerve, which causes elbow extension, to derivis@netric force recruitment curve

(b): In (a) the muscle group is stimulated at increasing @iition levels. Stimulation starts at 0 s and ends at 1 s. Vaeage force over the last half second
for each stimulation level is plotted against the stimolatlevel in (b), and a sigmoid curve is fit to the data pointsteNiat (a) shows only active forces
due to stimulation of the muscle group. It does not includsspa effects such as gravity or muscle stiffness.

67M25A3-140) as shown in Fig. 2. The subject's arm waas noise. Maximum likelihood was used to estimate the
at approximately 45 degrees of shoulder elevation measupatameters:;, b;, andc; for each recruitment curve.
in a vertical plane rotated by 70 degrees from the coronalBecause we stimulated the muscle groups one-by-one, we
plane, 55 degrees of shoulder internal rotation, 90 degresdved for each column afl in (3) separately. This was done
of elbow flexion, and zero forearm pronation/supination. Wey a linear least squares fit with no intercept term,
chose this configurationg(in (1)) because it is useful in A — pogit )
everyday tasks and a configuration for which we expected i~ Y8
the arm to exert significant endpoint forces in each of thehere A; € R3*! is the column of A corresponding to
measurement directions. the j muscle group (Fig. 4)F; € R3*10 is the matrix of

To identify the model described by (3) and (4) we used endpoint force vectors (ten vectors, one for each stinadati
method similar to the steady-state step response methdd [18vel) corresponding to thg" muscle groupg; € R'*1°
We stimulated each muscle group at discrete stimulatiosepuls a vector of normalized force magnitudes (one for each
widths and recorded the resulting steady-state endpoioéfo stimulation level) corresponding to th& muscle group, and
We used a fixed transformation from the sensor coordinagg’ is the Moore-Penrose pseudo-inverseggf
frame to the coordinate frame at the third knuckle of the hand

ShEW”hi”fFig- 2. I ulated D. Feedforward Controller

ach of the nine muscle groups was stimulated at constanf, . . -

pulse widths of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% [Jsmg the |dent|f|ed_model, we devel_ope(_j a feedforwa_rd
. . . ontroller that determines the stimulation inputs thatl wil

90%, and 100% of its maximum pulse width for a total O?roduce a desired active endpoint force

90 stimulation trials. A five second rest period followed read’ P '

. : . Given a target forceft, the controller inverts the model
one second stimulation. The order of muscle groups stiradlat o . Lo
identified above to compute the stimulation inputto be ap-

and pulse V.V'dth levels was randpmlzgd. The experiment W8Hed to the arm. Because the system is redundant, therd is no
separated into ten blocks of nine different muscle groups

per block, so each muscle group was only stimulated onge maue solution of (3) fog(u). To resolve the redundancy

. : we minimize the sum of squares of muscle activations subject
during each 54-second block. This allowed each muscle grou . .

. : . o t0 the constraints that the model-predicted force equads th
sufficient time to rest before stimulation in the next block.

An example of evoked force vs. time for the ten trial%arget force and that the activations are between zero aed on

for a muscle group is shown in Fig. 3(a). Each point on minimize: ||g(u)|[3
the recruitment curve (Fig. 3(b)) is the difference between subject to: Ag(u) = f* (6)
the force magnitude averaged over the last half second of g;(uj) €[0,1] Vj.

stimulation and the force magnitude averaged over the secc?—lnaving obtained the activations(u)

. : . required to achieve the
before stimulation began. Subtracting the force measur

get endpoint force, the controller inverts the recreitin

d f d by stimulati | d ¥irve (4) to find each required stimulation input There is
St?a_ y-state orce generated by stimu at!ng & MUSCIE GINAP o\ igence that the healthy nervous system uses this minimum
eliminates passive effects such as gravity or muscle e88n 4 otion strategy [11]

Generally the force magnitudes in Fig. 3(a) plateau aftér 0.
seconds of stimulation. Fluctuations in the force magmitu
for 60%, 80%, and 100% stimulation are due to movement

that results from breathing. The model treats these flucngmt ~We evaluated the accuracy of our controller using a grid
of evenly-spaced endpoint force targets over the 3D range

Total Error in Multi-Muscle Force Control
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- endpoint force target

Fig. 4. Graphical description ofi in (3): each vector originating from Fig. 5. Target forces in controller performance experime®ack circles
the subject’'s hand represents the magnitude and direcfitimedorce at the represent targets in they andyz planes in endpoint force space. If a vector
subject’s hand when stimulating the corresponding musobeigat 100%. were drawn from the subject’s hand to each black circle, \thator represents
Each vector is a column ofi. Only six muscle groups are labelled in thethe direction and magnitude of the target force. The blasgsibound the set
view on the right because of space considerations. SS isisable in the of achievable endpoint forces in each plane.

view on the right because it has very smgjland f. components. The black

rings bound the set of achievable endpoint forces in eaahepla

targets (Targets 2-5) were repeated 15 times each. On Day 2

) ) ] the trials for the first two targets were run in random order in
of achievable forces. To determine the range of achievaljfe plock and the trials for the last two targets were then run
endpoint forces we assumed that each muscle group 3gt$andom order in a second block. The timing of stimulation
independently, and can produce a set of forces defined By rest were the same as in the previous subsection.
the line segment between zero and the maximum 3D forcérandom error was quantified for each target by computing
measured during the characterization of its recruitmente&eu yhe covariance of the measured 3D force for the repeatés tria
The set. of all achleval?le forces is then thg M.In.kOWSkI SUBhd reporting the square root of the largest eigenvalues Thi
of the nine sets of achievable forces of the individual MiSGlgpresents the standard deviation of the force in the direct
groups. The “volume” of achievable forces is a convex regiqf |argest variance. Bias error was computed as the diftaren
and can be seen in 2D slices (Fig. 5). _ between the target and the mean of the measured force over

We constructed a grid of targets (Fig. 5) in th& [fy, f:] the repeated trials at each target.

space with 4.5 N spacing to fill the volume of achievable
endpoint forces. Controller performance trials were catell s sources of Model Bias in Multi-Muscle Force Control
on two separate days with 48 hours of rest between sessionsbur results indicated that bias errors were larger than
This resulted in 69 targets on Day 1 and 66 new targets on

. . random errors for our controller. We therefore investidate
Day 2 for a total of 135 unique endpoint force targets. T . . T
. . . : . ree possible sources of the observed bias. The first paitent
orientation of [f,, fy, f:] coordinate systems in which the

targets were computed were different from one day to the nexpuree 1s due to system nonstationarity present between the

On Day 1 the order of targets was randomized and divided in%stem identification experiments on Day 1 and the subséquen
controller performance experiments on Days 1 and 2. Passibl

three blocks. The Day 2 targets were randomized in two equéﬂ

blocks. The blocks were run in succession with a short perigau_rces of n(_)nstatlo_narlty 'nCIl.Jde fatigue or experimienta
. . utliers associated with nonstationary events such as leusc
for data logging between blocks. One trial was run for eac

target Spasms or postural changes during the system identification
Each trial consisted of stimulating the muscle grouposrocess_. The second possible source. of bias is nor_1I|near

. . Interactions between muscle groups, which are not coresider
corresponding to the desired target for one second folldyyed . . .

L i in our model (3). These may arise from current spillover or

30 seconds of rest to limit any effects of fatigue. The meagsur N .

. force transmission between muscle groups. The third source
steady-state force, which was the mean force output over the”~ . , : L
Of bias is poor model fits due to an insufficient amount of data.

final 0.5 s of stimulation, was recorded. We computed theTo evaluate the effects of nonstationarities we refit olgdin
error, which is the difference between the predicted and-mea ) - .
odel mapping muscle activations to endpoint forces to the

sured steady-state force output, for each target and C(mipu'p ;
controller performance experiment data. Then we compared
the root-mean-square (RMS) error over all targets.

the refit model’s ability to predict endpoint forces to thdt o
o . the model that was fit to the original system identificatiotada
F. Random Error and Bias in Multi-Muscle Force Control The parameters of the model (n (3)) were identified using
To estimate the relative contributions of random error arghta from 100 trials randomly-selected from the data se86f 1
bias to the total error, we ran several repeated trials taials, and the model’'s performance was evaluated on 30 othe
five different endpoint force targets spanning much of thendomly-selected trials. The superior performance ofé¢ffie
achievable force space (Fig. 8). On Day 1 a single targabdel, if any, indicates differences between the origiyal s
(Target 1) was repeated 10 times. On Day 2 four addition@m identification data set and the controller performarata.d
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Fig. 6. Measured force in the direction vs. time for a typical controller Fig. 7. RMS errors in endpoint force compared to the rangecbfesable
performance experiment: The steady-state force is thexgeesf the measured endpoint forces over both days of controller performangaegrments.
force during the final half second of stimulation.

using 30 randomly selected trials not used to fit the model.

For instance, if muscle properties changed between the sy&is process was repeated 1000 times for each size data set.
tem identification experiments and the controller perfatoga =~ We trained Gaussian process models using the GPML
experiments, the new refit model should perform better. Veolbox [21] for MATLAB®Y. Our GPMs used a zero mean
attribute these differences to nonstationary system ptiege function, a squared exponential covariance function, and a

The process for refitting the model to the controller perfoGaussian likelihood function. The model's hyperparanseter
mance experiment data was as follows. As the controller peiie input length scale, the output covariance and the neiss |
formance experiment data includes no information on muscle were determined by maximizing the marginal likelihood of
groups stimulated individually, we could not directly rezo the data, which balances fitting the data well with avoiding
pute recruitment curves. To indirectly recompute recreitin model complexity.
curves we fit a Gaussian process model (GPM) [20], which
is a nonlinear function approximator, to the entire 135 data 1. RESULTS
point set. Using the GPM we created simulated single musglé Total Error in Multi-Muscle Force Control
group data and computed recruitment curves based on th

simulated data. Given stimulation inputs from the congnoll in Fio. 6. Shortly after stimulation b h b
performance experiment data, we computed the correspgn own In F1g. ©. Shortly after stimufation began th€ measure
orce began to rise and eventually oscillated around a gtead

muscle activations using the recomputed recruitment &urv : I Wh imulat ded. th 4 f
We then refit our linear model (3) to 100 randomly-selectescs";‘e value. en stimuiation ended, the measured force

trials and evaluated its predictions for 30 other randOmlrgturned close to its pre-stimulation level. Similar sialere

selected trials. condU(_:ted with targets over the entire space of achievable
deomt forces.

This cross-validation process was repeated 1000 tlmi;’he magnitude of RMS error of the controller over the

ei’he results of a typical controller performance trial are

yielding 1000 new linear models. To quantify the effects g 0

nonstationarities we compared the mean RMS error over th E\_/enl)k/)-lspacgd jtatr?ets Wa;. 5'? N_”(:r Ill/o ?f;&es range

models to the error in the controller performance experimer? achievabie endpoint forces (Fig. 7). The larges rerro
as in the vertical ) direction. The error was 4.1 N or 26%

To evaluate the effects of nonlinear interactions, we f achievabl tical f Th it
Gaussian process models to the same data sets that were Bgéae range ot achievable vertical forces. The resulls were
ar over both days of testing as the magnitude of RMS

to refit the linear models, yielding 1000 GPMs. The cpmam

predict the endpoint force given the muscle activationh# t err%: 0? Daytl was 5.3 N ang 0?] Day 2dwa?1 5'3? N't s
GPM, which can capture a wide range of nonlinear interastio € largest errors occurred when undershooting targets in

between muscles, predicts endpoint forces better than ﬂ%‘g vertical £) direction. This means that muscle groups

linear model, it would suggest that nonlinear interactim%mduc'ng force in the vertical direction did not produce as

between muscles significantly affected controller perfamoe. much for_ce.as thg |de-nt|f|ed_ model predicted. The largest
We used the same cross-validation process for the GPMs as’ > coincided with stimulation of lower pectoralis aié t
was described for the linear models and compared the aver %r_acodorsal nerve which were the_prlmary producers of
RMS error of the GPM models to the average RMS error of th rtical force at th_'s arm pose (se_e Fig. 4)' The reasons for
linear models to evaluate the effects of nonlinear intéoast ' c>¢ €ITors are discussed further in Section IIIC.

Finally, the influence of the amount of data available for o )
fitting the model parameters was assessed by repeating BngR@ndom Error and Bias in Multi-Muscle Force Control
fitting process with randomly selected data sets having @0, 3 The total error reported above reflects both errors due to
40, 50, 60, 70, 80, 90, and 100 data points. This process viaas in the feedforward controller and random errors due to
performed for both the GPM model and the re-estimated lineaariability of force production across trials. We evaluhtbe
model, and performance of each model was cross-validatmshtributions of these different sources of error by rugnin
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Fig. 8. Scatter plots of repeated controller performangeements inthecy  Fig. 9.  Sources of error in multi-muscle endpoint force cantl000 linear
plane (left) and theyz plane (lower right): Large closed symbols represeniodels and 1000 GPMs were fit to randomly-selected test sets the

the endpoint force targets, and smaller open symbols reprete actual controller performance data set for increasing numbersatd goints in the
endpoint force measured in repeated experiments. If a veetoe drawn test set. The average RMS error of the models in predictifp@int forces
from the subject’'s hand to each symbol, that vector reptesiie direction for data not in the test set is represented by blue circleshfotinear models
and magnitude of the target force for a large closed symbth@measured and red circles for the GPMs. The error bars represent twalatd deviations
force for a smaller open symbol. The black rings bound theoathievable away from the average of the 1000 models. The solid horizdrgek line

endpoint forces in each plane. Target 1 was tested on Daydlihenother represents the RMS error of the controller that used the hiddatified on

four targets were tested on Day 2. 90 data points prior to the controller performance expenisie

repeated trials for five different endpoint force targets.
Errors due to model bias were larger than errors due to tri
to-trial variability. The forces observed on repeated oaint . i
trials attempting to produce five different force targets arldem'f'e.d for every.musple group. .
shown in Fig. 8. For each target, each of the repeated tri |SDesp|te non;ta_ﬂonant_y |n.aII m_uscle groups, espe_c|ally
used the identical muscle stimulation pattern. As can ba Sjgrge_errors CO|nC|_ded with stimulation Of. lower pe_ctwails '
in the figure, the desired force and the distribution of fercénentloned n Sgctlo_n ”_IA‘ The def:reas_e n error with _thetrefl
actually produced for each target are different. Theserai-rr(fr'ocleIS was p_nmarlly_ in the yer_tl_cal direction to Whlch the
due to bias ranged between 2.3-6.0 N (RMS), correspond Quver pectoralis contributed significantly. The reason tfus

to 5-13% of the total range of achievable endpoint forces. hat the nonstationarity in the lower pectoralis reenaint

The random error due to trial-to-trial variability, as meeed curve occurred at a stimulation level that was very fredyent

by the distribution of measured forces for each target, WH§8d‘ The range of stimulation of other muscle groups was

relatively smaller, ranging between 0.9 to 1.6 N, or 2-3% Jpore uniform during the controller performance experirsent
the total range of achievable endpoint forces so the effects of nonstationarity were diminished.
' We found that there was only a modest reduction in

o ) error when the second source of model bias — nonlinear
C. Sources of Model Bias in Multi-Muscle Force Control  jteractions between muscle groups — was considered. To
Because model bias errors were larger than random erreh®w this we fit a Gaussian Process Model (GPM) to each
we further investigated the sources of model bias. Wd# 1000 data sets randomly selected from the controller
guantified model bias due to nonstationary system projgertiperformance experiment data. A GPM can account for
nonlinearity of muscle interactions, and the use of limitedonlinearities as detailed in Section 1IG. The average RMS
data in system identification. error of these 1000 GPMs was compared to the average
To estimate model bias due to nonstationary systeRMS error of the 1000 linear models described above. The
properties, we re-estimated our model 1000 times usingduction in average RMS error was from 2.7 N using the
different randomly-selected trials from the controllelinear model to 2.4 N using the nonlinear GPM (Fig. 9).
performance experiments. We compared the average RNIBe difference between the average RMS error of the GPMs
error of the refit models to the RMS error of the originahnd the average RMS error of the linear models was not
controller. statistically significant (see error bars in Fig. 9). Thisadm
Re-estimating the model reduced the magnitude of tlmprovement when using the nonlinear GPM suggests that
total RMS error to 2.7 N or 2.5 N less than the error ahe forces produced by individual muscle groups combined
the original model. We attribute this 2.5 N difference t@pproximately linearly during the controller performance
nonstationary system properties. The error in the vertioekperiments.
force component was reduced to 1.1 N, or 3.0 N less thanFinally, we examined the consequences of estimating
the vertical component of the error of the original modemodels using limited amounts of data. As shown in Fig.
This demonstrates that the systematic undershoot medtio®e the prediction error steadily decreased with increasing
in Section IlIA was greatly reduced using the re-estimatetumbers of data trials used to identify the model, up until
model. Smaller error reductions were observed in the tvapproximately 40 data points were used. There were minimal

Qorizontal directions. Almost all parameters in the refielr
models were significantly different than those originally
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improvements in model predictions as data sets were inetleatd adjacent muscles or due to connective tissue interaction
beyond this number for models allowing either linear doetween muscles have minimal effect on force production by
nonlinear interactions between muscles. multiple muscles. A minimal effect of nonlinear interacto
between muscles was recently described in similar studies
performed in the rat [22].
IV. DISCUSSION The finding that muscle forces add linearly in a human

The goal of this research was to quantify the errors iIIZ,]ES_syste_m grea‘FIy simplifies the design of FES _controllérs.
force productioin associated with using FES to control -multnonllnear mteras:tlonS were presept, more gpmpl|c§\tedg1sod
ple muscles in the human arm. To eliminate complicatior? force productlon would be requwe_d, significantly incse
associated with modeling the relationship between musd e complexity of FES controller design. Note that we seléct

forces and the resulting motions of a multiple-degree-d ne range of stimulation pulse widths to explicitly avoidr-cu

freedom limb, we considered only isometric force generatiieent spillover. Further, nonlinear connective tissueratdons

and an empirically determined linear mapping between t gtween _muscl_es might be_come more S|gn_|f|cant _a_t extreme
forces generated by each muscle and those measured at“m .conf|gqrat|ons, or du.rlng more dynamic conditions not
endpoint of the arm. This approach allowed us to quantiﬁ?ns'dere'd in these experiments.

the total error associated with multiple muscle control &md

estimate the Contributions that Could be attributed to ||nﬂa|r B. Errors Due to Nonstationary System Properties
interactions between muscles, nonstationary system piepe
model biases resulting from the use of limited data durirgg t
estimation process, and random errors.

h A large source of error in our experiments was due to differ-
ences between the forces produced by muscle groups during

Quantifying errors in isometric force control is a necceyssathe initial system identificatiqn experiments and du_ring th
step toward motion control of multiple joints. The multi_controller performance experiments. When these diffegenc

muscle system applies forces that produce torques accr §§/e izcounted forj thle izta: tirror V\f[as reduced b}{’ tffllmOSt
multiple joints. The endpoint force we measured is linearly” " ese errors imply that the system was nonstationary.

related to torques about the joints of the arm. In quantifyin ontributions to this behavior could arise from outliersidg

the error in endpoint force relative to the total range otéor the 'r:"t'al sy.st.em fldent|f|cat|c|)n data collgctlon_procmcr:]hsm
output, we quantify the expected errors in joint torqueatie as t ose_anst!ng | r?m rr?_utsce fSFi?.SI’ﬂS N patl_?_nts tWIIt '
to the range of possible joint torques. We have quantified tﬁgangebs tm N |mtu_a||0r;t _|sdo_1[fy, cﬁ[{gue, (Tr St'gr.'f' |canh -
steady-state accuracy of the torque actuators of our systéer[rwrs etween trials. 1t s difficult to evaiuate 1t such 8

This is especially useful in using well-known robot arl_I,gonarities would be expected consistently for FES coidrs)

control strategies which typically command torques to piazd NecauEel of thehhmlted d?tadavanablﬁ fqr th(;se_experlmentsf
desired motions. For instance, in designing a controllezneh one_t eless, t ese resu ts do emphasize t e_lmportance 0
cking changes in the muscle response to stimulation over

torques are commanded, the expected uncertainty in thedor a _
command can be propogated through a simulation model e to improve FES controller performance. Such changes
might be corrected directly using adaptive control strigteg

predict errors in the motion of the arm. Y .
Our work in isometric force control does not address son®® accounted for more indirectly using robust feedback con-

factors that may contribute to errors in motion control. Wgollers.
intentionally did not consider the nonlinear dynamics of th
skeletal system in order to isolate the effects of musclegforc. Random Error due to Trial-to-Trial Variability

production. Our steady-state analysis also did not conside __ . . I . .
the dynamics of the muscles themselves. Identifying stbjec Trial 1o trial variability contributed approximately 152
0 .

specific models of the muscle dynamics and skeletal dynammé‘?’o /0.) of thedtotzl error. .If the .errorz due tol any nonl!near
are critical future steps that will build on our current istie mteract;ogsf an t ¢ Iatche'sl n e_stl;ml_?te ”;L{;Cte dpéfngrtﬁ sar
gation of isometric force generation by mutliple muscles. acc;)un ed for, trial-to-trial variabiity contributedote.-

The remainder of the discussion focuses on the speciﬁsc4/°) of the total_ error. Th_|5 random error might in part
findings of this study. We found that nonlinear interactiond® due to nonstationarities in the physiological state ef th

between muscles made only modest contributions to the to'ir%llt'SCU|OSkeleta| system during the period of the controller

error of the controller, while random error and errors due Q)erformance trials. This could arise from fatigue, chariges

nonstationary system properties had more substantiarieon"f‘rousal’ _rgflexes, or musclg Spasms. - .
butions. We discuss each of these results and their paten 'aIn addition to_these physiological sources, itis also fulesi
implications to the design of FES controllers below. that some of this random error was due to measuremgnt error.
As seen in the raw data trial of Fig. 6, there were considerabl

) _ fluctuations in the forces that were measured, due in part to
A. Nonlinear Interactions Between Muscles the patient's respiration. Because of the likely contiids

The finding of minimal contribution of nonlinear interac-of such measurement errors, it is likely that the randomrerro
tions between muscles was somewhat surprising as theremliserved here was an overestimate of the true variability of
evidence to suggest nonlinear interactions exist [7, 8]s Thorce production during FES and should be considered as an

result suggests that nonlinearities due to current sgHowpper bound on the amount of random error.
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D. Conclusions [6] P. Li, Z. Hou, F. Zhang, M. Tan, H. Wang, Y. Hong,
and J. Zhang, “An FES cycling control system based on
CPG,” in 31st Annual International Conference of the
IEEE EMBS 2009, pp. 1569-1572.

H. Maas and T. G. Sandercock, “Force transmission
between synergistic skeletal muscles through connective
tissue linkages,Journal of Biomedicine and Biotechnol-
ogy, 2010, article ID:575672.

P. A. Huijing, “Epimuscular myofascial force transmis-
sion: A historical review and implications for new re-
search. international society of biomechanics muybridge

The results of this study describe the performance of a
feedforward FES controller for the production of flexible-mo
tor outputs in humans. We demonstrated the contributions of
different sources of error to the performance of this cdtgrp
showing a minimal effect from nonlinear interactions begwe
muscles but greater effects from errors due to nonstatjonar
system properties and from trial-to-trial variability.

Although we were able to account for a substantial portior{8]
of the observed errors in FES performance, it is important
to note that some unexplained, residual error was observed.

If we consider that 0.9-1.6 N of the total error of 2.4
N for the nonlinear GPM model was due to trial-to-trial
variability, then there remains approximately 0.8-1.5 N o

award lecture, taipei, 2007 Journal of Biomechani¢s
vol. 42, no. 1, pp. 9-21, 2007.

] D. Blana, R. F. Kirsch, and E. K. Chadwick, “Com-

bined feedforward and feedback control of a redundant,
nonlinear, dynamic musculoskeletal systeigdical &
Biological Engineering & Computingvol. 47, pp. 533—
542, 2009.

T. Watanabe, K. libuchi, K. Kurosawa, and
N. Hoshimiya, “A method of multichannel PID
control of two-degree-of-freedom wrist joint movements
by functional electrical stimulation,”Systems and
Computers in Japanvol. 34, no. 5, pp. 25-36, 2003.

1] A. H. Fagg, A. Shah, and A. G. Barto, “A computational

error that we have not accounted for. This residual error
might reflect physiological processes, such as muscleufatig
during the controller performance experiments, which were
not evaluated systematically in these experiments. lefoee
remains possible that the error observed here for feedfarwaL0]
FES control could be reduced further if this residual error
could be accounted for and incorporated into the controller
It is clear that any practical FES system will need to include
some form of feedback control to compensate for errors in
force production, but it is unclear at what level this feedba [1

should occur. Feedback can be provided at the highest lgvel b~ M0del of muscle recruitment for wrist movementgur-
the user, who is able to grade the level of stimulation thiou nal of Neurophysiologyvol. 88, pp. 3348-3358, 2002.

the user interface [23, 24]. Alternatively, automatic feack (1’12] J. L. Lujan and P. E. Crago, "Automated optimal coordi-
control may be used to correct errors in the output [9, 10], nation of multiple-dof neuromuscular_actlons in feedfpr-
which could be the position of the hand or the joint angles of ~Ward neuroprosthesedEEE Transactions on Biomedi-
the arms. Automatic feedback could also be used at the muscle. ¢&! Engineeringvol. 56, no. 1, pp. 179-187, 2009.
actuator level to correct errors in force and torque [25]. ] E. M. Schearer, Y. Liao, E. J. Perreault, M. C. Tresch,
The results of the present study provide important infor- . D- Memberg, R. F. Kirsch, and K. M. Lynch, “System
mation on the characteristics of the internal errors thadne  'dentification for 3D force control of a human arm
to be considered when designing a feedback controller for a neuroprosthesis using functional electrical stimulation

high-degree-of-freedom system such as the human arm. in International Conference on Robotics and Automation
2012.

[14] K. H. Polasek, H. A. Hoyen, M. W. Keith, R. F. Kirsch,
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