Sequential Action Control: Closed-Form Optimal
Control for Nonlinear and Nonsmooth Systems

Alex Ansari and Todd Murphey

Abstract— This paper presents a new model-based algorithm
that computes predictive optimal controls on-line and in closed
loop for traditionally challenging nonlinear systems. Examples
demonstrate the same algorithm controlling hybrid impulsive,
underactuated, and constrained systems using only high level
models and trajectory goals. Rather than iteratively optimize
finite horizon control sequences to minimize an objective, this
paper derives a closed-form expression for individual control
actions (i.e., control values that can be applied for short duration)
that optimally improve a tracking objective over a long time
horizon. Under mild assumptions, actions become linear feedback
laws near equilibria that permit stability analysis and perfor-
mance based parameter selection. Globally, optimal actions are
guaranteed existence and uniqueness. By sequencing these actions
on-line, in receding horizon fashion, the proposed controller
provides a min-max constrained response to state that avoids
the overhead typically required to impose control constraints.
Benchmark examples show the approach can avoid local minima
and outperform nonlinear optimal controllers and recent, case-
specific methods in terms of tracking performance, and at speeds
orders of magnitude faster than traditionally achievable.

Index Terms—real-time optimal control; nonlinear control
systems; hybrid systems; impacting systems; closed loop systems.

I. INTRODUCTION

Robots often present nonlinear, hybrid, underactuated, and
high-dimensional constrained control problems. To address
these problems, this paper focuses on computational methods
that provide a relatively automated policy generation process.
The primary contribution is a model-based algorithm that uses
optimization to rapidly synthesize predictive optimal controls
in real time from a closed-form expression. The process takes
advantage of hybrid and underactuated nonlinear dynamics and
allows robots to react to the environment on-line. Included
examples show this algorithm, which we refer to as Sequential
Action Control (SAC), can automatically generate controls for
traditionally challenging classes of (nonlinear) robotic systems
(e.g., continuous, underactuated, hybrid, impulsive, and con-
strained systems) using only robot models and trajectory goals.

Figure 1 provides an overview of the proposed SAC process.
Each cycle computes an optimal action (see Def. 1 and the
blue shaded bar in Fig. 1) that is sent to a robot. At fixed
sampling times, SAC incorporates feedback and repeats the
cycle to compute and apply the next action. Subsequent actions
are usually synthesized and applied before the robot completes
implementing the previously planned control. Although each
action is designed for a short application duration, they each
improve system performance for a relatively long horizon
(from [to,ty] in Fig. 2) from the (receding) current time.

Definition 1. Actions are defined by the triplet consisting of
a control’s value, u € R™, application duration, A € RT, and
application time, T € R.

Procedurally, SAC is similar to continuous-time, nonlinear
receding horizon control. That is, SAC constructs a closed-
loop control response from a succession of open-loop, finite
horizon optimal control problems. However, receding horizon
implementations seek control curves that minimize the tra-
jectory objective over each (receding) horizon. For nonlinear
systems, each of these optimal control problems is non-convex,
requiring an expensive process of iterative optimization that
limits implementation to low bandwidth and is subject to local
minima [2], [3].

Instead of searching for control curves that directly mini-
mize a trajectory objective, each cycle of SAC computes an
infinitesimal (duration) action that would optimally improve
performance over the current horizon. Assuming actions are
applied infinitesimally, the process does not need to enforce
nonlinear dynamic constraints. As a result, SAC computes
an entire schedule (curve) providing the optimal infinitesimal
action at every time over the current horizon from a convex
objective. Section II shows the convex objective yields closed-
form solutions with guaranteed optimality, existence, and
uniqueness. To choose a “best” action, SAC searches the action
schedule for an optimal time to act over the current horizon
and uses a line search to generate a short (finite) duration
that guarantees long time horizon improvement in trajectory.
Benchmark examples show SAC outperforming case-specific
methods and popular optimal control algorithms (sequential
quadratic programming [77] and iLQG [67]). Compared to
these alternatives, SAC computes high-bandwidth (1 KHz)
closed-loop trajectories with equivalent or better final cost in
significantly less time (milliseconds/seconds vs. hours).

By optimizing over the space of individual (infinitesimal)
control actions, Section II-D (and the Appendix) shows SAC
requires none of the traditional overhead to deal with control
saturation constraints. Additionally, SAC does not need to
solve the challenging two-point boundary-value problems used
to derive finite horizon optimal controls with indirect methods,
nor does it discretize to solve the high dimensional nonlinear
programming problems faced by direct methods [54]. Instead,
SAC avoids iterative optimization and makes constrained op-
timal control calculation roughly as inexpensive as simulation.
Thus measurement incorporation and feedback synthesis can
occur at higher bandwidth. Because controls can be expressed
as an analytical formula, the method is easily implemented
in code. In short, SAC enables predictive optimal control

System Model

optional software
sl sos | — [dynamics |
21| rROS | trep | —
2| | model !_system |hnu1rmatlonbj
Compute Optimal —_—
Actions | _]
§ | params | <€
§ Predict SAC De: (tl;h VL\htn | + I _
N £
T Decide l-f{)w L()ug/ | |
to Act \ ———
M=
- I Feedba “k SAC Action I
21 @iniw) N
& past future I
% I \ At I(
k= —
Z | |
= | Robot -«=—— |
N — L D

Fig. 1: An overview of the SAC control process including
possible open-source interfaces (e.g., ROS [52] and trep [32]).

methods to be applied on-line and in closed-loop for robotic
systems where such methods would normally prove infeasible.

This paper is divided into two parts. Part I (Sections II -
IIT) derives SAC for a broad class of differentiable nonlin-
ear control-affine systems. Additionally, Section II includes
stability results and conditions under which optimal actions
become locally linear feedback laws that facilitate parameter
selection. The section also derives efficient means to impose
min-max control constraints, demonstrated in the examples
in Section III. Part II (Sections IV-VI) shows that extending
SAC to control of hybrid impulsive systems only requires
modification a single differential equation governing an adjoint
variable. Section V-C presents illustrative examples, including
on-line control of a 3D spring-loaded inverted pendulum up a
flight of stairs. Conclusions and future work are in Section VI.
Table I includes notation used throughout this paper.

TABLE I: Notation

symbol description
D, f(-) partial derivative %
Il as norm where M provides the metric
e [l®lI = 2()TQu(t))
R°T equivalent to (RT)~?
R>0 indicates R is positive definite (> for semi-definite)

PART I: SAC FOR DIFFERENTIABLE SYSTEMS
II. CONTROL SYNTHESIS
A. Analytical Solution for Infinitesimal Optimal Actions

This section presents a method to compute the schedule
of infinitesimal optimal actions associated with the current
horizon T = [to,ts] based on early work in [5]. Calculations
result in a closed-form expression for this schedule for systems
with dynamics,

#(t) = f(t,2(t), u(t)) (1)

me
future

/— control applied

= TR
___ u;(77n)

to +ts

Leale

T .

to tr
Fig. 2: Following the cyclic process in Fig. 1, SAC computes a
schedule, us : [to,tf] — R™, providing the value of optimal
infinitesimal actions that maximally improve a tracking ob-
jective over the current (moving) horizon. Next, SAC selects
an application time, 7, € (to + tcaic,ty), and the value of
the resulting infinitesimal optimal action (in red) specifies the
value of the next SAC action (blue shaded bar). A line search
sets the action’s duration, A. Previously computed actions are
applied while current calculations complete, ¢ € [to, to+teaic)-

nonlinear in state x : R > R™X!. Though these methods
apply more broadly, the optimal action schedule is derived
for the case where (1) is linear with respect to the control,
u: R — R™X! satisfying control-affine form,

[t a(t),ult) = gt z(t)) + h(t,z@) ul®). (2
The cost functional,
= [i) e mtey)).)

measures performance to gauge the improvement provided by
optimal actions.! For brevity, the time dependence in (1), (2),
and (3) will be dropped. The following definitions and as-
sumptions clarify the systems and cost functionals addressed.

Definition 2. Piecewise continuous functions will be referred
to as C°. These functions will be defined according to one of
their one-sided limits at discontinuities.

Definition 3. Though actions are defined by a triplet consist-
ing of a value, duration, and application time (see Def. 1),
for the sake of brevity, we will refer to actions according to
their value and will disambiguate by speczﬂing the application
time and duration as required. As such, U, £ {u2 Tin,i ’ 1€
{1, . c}} will represent the set of optimal actions applied
by SAC with T, ; as an action’s application time. The maximal
index ¢ € N corresponds to the last action applied. The
set of application intervals associated with each action is
T 4 {Ti}ie{l,...c}’ such that T; = [Ty, — %,Tm’i + %]
and)\; is an action’s duration.

Assumption 1. The elements of dynamics vector (1) are real,
bounded, C in x, and C° in t and w.

"Though not required, (3) should be non-negative if it is to provide a
performance measure in the formal sense.

Assumption 2. The terminal cost, m(x(ty)), is real and
differentiable with respect to x(ts). Incremental cost l1(x) is
real, Lebesgue integrable, and Clin x.

éssumption 3. SAC control signals, u, are real, bounded, and
C® such that

ult) = {

with nominal control, uy, that is C° in t.2

te XY,

U1 (t)
u2* (Tm,i)

The planning process assumes the system switches from a
(default) nominal mode,

F1(t) = f(x(t), ur (1)),

to the mode associated with the optimal action,

f2(ta me’) £ f(x(t), UQ* (Tm,i))’

and then back to f; over the course of each horizon [to,ty].
Consider the case where the system evolves according to
nominal control dynamics f1, and optimal action uJ (7, ;) is
applied (dynamics switch to f3) for an infinitesimal duration
before switching back to nominal control. This is the condition
depicted by the red curve in Fig. 2 where nominal control
u1 = 0. In this case, the mode insertion gradient [15], [16],

L
dAS

evaluated at s = 7, ; measures the first-order sensitivity of the
cost (3) to infinitesimal application of f5. Note (4) assumes
the state in f; and fy is defined from the nominal control,
z(s) £ z(s,u1(s)) Vs € [to, ts], p: R — R™ 1 is the adjoint
(co-state) variable calculated from the nominal tlrajectory,3

p=—Daly(x)" = Dy fi(z,u1)"p, (5)

with p(t;) = D,m(x(ty))T, and the control duration is
evaluated infinitesimally, as \; — 0.

In hybrid systems literature, the mode insertion gradient
provides the first-order sensitivity of a cost function to an
infinitesimal duration switch in dynamics. The term is used
in mode scheduling [12], [16], [72], [73], to determine the
optimal time to insert control modes assuming the modes are
known a-priori. This work demonstrates how it can be used
to solve for the value of infinitesimal optimal actions (new
modes) at each instant. A thorough discussion and a general
derivation that extends (4) to hybrid impulsive dynamical
systems with resets and objectives that depend on the control
is included in Section IV.

While infinitesimal optimal actions cannot change the state
or tracking cost, the cost (3) is sensitive to their application.
The mode insertion gradient (4) indicates this sensitivity at any
potential application time, s € [to,ts]. To specify a desired
sensitivity, a control objective selects infinitesimal optimal
actions that drive (4) to a desired negative value, oy € R™.

= p(s)" (fa(s,8) — fi(s)) Vs € [to,ts], (4

>The dynamics and nominal control can be €O in t if application times
Tm,i exclude points of discontinuity in wq ().

3As opposed to traditional fixed-horizon optimal control methods [41], [50],
this adjoint is easily computed because it does not depend on the closed-loop,
optimal state x * (£, ug (Tpm,i))-

At any potential application time s € [to, ¢], the infinitesimal
optimal action that minimizes,

la(s) 2o (x(s), wi(s), ua(s), p(s))

1.dJ 1
:§[ﬁ —ad}2+§||u2(3)\|% (6)

1 1
= 51p(8)" (fa(5,8) = f1(s)) = @a]® + 5 [lu2(s)lI >
minimizes control authority in achieving the desired sensitivity.
The first expression in (6) highlights that the objective corre-
sponds to actions at a specific time. The matrix R = RT > 0
provides a metric on control effort. Because the space of
positive semi-definite / definite cones is convex (see [11]),
(6) is convex with respect to infinitesimal actions wus(s).

To minimize (6) and return the infinitesimal optimal action
at any potential application time s € [to,?s], the mode inser-
tion gradient must exist at that time. This requires continuity
(in time) of p, f1, fo, and wy in a neighborhood of s (see
[15]). While Assumps. 1-3 ensure continuity requirements are
met, the assumptions are overly restrictive, and the results of
this paper can be generalized.

With Assumps. 1-3, the mode insertion gradient exists, is
bounded, and (6) can be minimized with respect to us(s) Vs €
[to,ts]. The following theorem finds this minimum to compute
the schedule of infinitesimal optimal actions.

Theorem 1. Define A = h(x)T ppT h(z). The schedule of
infinitesimal optimal actions,

us (t) £ arg m%n) lo(t) ¥t € [to,ty], (7
uso(t

to which cost (3) is optimally sensitive at any time is
ug = (A+ R [Aug + h(x) pay]. (8)

Proof: Evaluated at any time t € [t,ty], the schedule
of infinitesimal optimal actions, ug, provides an infinitesimal
optimal action that minimizes (6) at that time. The schedule
therefore also minimizes the (infinite) sum of costs (6) as-
sociated with the infinitesimal optimal action at every time
Vt € [to,ts]. Hence, (7) can be obtained by minimizing

Ty = / D o (t), ua (), ua (), p(t)) dt ©)

to
Because the sum of convex functions is convex, and x in (4)
is defined only in terms of u;, minimizing (9) with respect to
ug(t) Vt € [to, ts] is convex and unconstrained. It is necessary
and sufficient for (global) optimality to find the ug for which
the first variation of (9) is 0 Vduy € C°. Using the Gateaux

derivative and the definition of the functional derivative,
b8,

5.Jy = Sug (t) dt

to 6u2* (t) 2
— % s lg((E(t), Ul(t), ’LL2* (t) —+ En(t)’ p(t)) dt'e:O

to

_ / " a0, ur (1), w3 (1) + en(t), plt))eco

_ / e uégff(t)’ AL) an

(10)

where € is a scalar and en = dug.

The final equivalence in (10) must hold V7. A generalization
of the Fundamental Lemma of Variational Calculus (see [47]),
implies — 2() =0 at the optimizer. The resulting expression,

T T
O20) " _ 0,7 ha) [ug —] — aa)p T hia) + uiT R

Oug
= h(z)" p(p" h(@)[us —w1] — aq) + R u3
= [h(x)TPPTh() uy + RTuy
_[h(@)T ppT hle)ur — hx)T paq
=0, (11

can therefore be solved in terms of w5 to find the schedule that
minimizes (6) at any time. Algebraic manipulation confirms
this optimal schedule is (8). [|

In searching for finite horizon optimal control curves that
directly minimize an objective, the dynamical constraints in
nonlinear optimal control produce non-convex optimization
problems (even when the objective is convex). Such problems
require iterative optimization, often performed by linearizing
dynamics and quadratizing cost about the current trajectory
and solving a succession of convex sub-problems [26], [66],
[69]. The process is costly and solutions are still locally
optimal with respect to the constrained objective (subject to
local minima). In contrast, SAC searches for actions to which
(3) is maximally sensitive using a separate, unconstrained
objective (9). In addition to providing a closed-form solution
for the entire schedule of optimal actions (8), the following
corollary shows (8) also inherits powerful guarantees and is a
global optimizer even for non-convex tracking objectives (3).

Corollary 1. Solutions (8) exist, are unique, and globally
optimize (9).

Proof: The proof follows from the fact that minimization
of (9) is convex with a continuous first variation (10) (based on
Assumps. 1-3). These conditions guarantee the existence and
uniqueness of solutions (8) that cause (10) to vanish locally,
which is both necessary and sufficient for global optimality.

|

In addition to the properties of Corollary 1, near equilibrium

points, solutions (8) simplify to linear state feedback laws.

This linear form permits local stability analysis (and parameter
selection) based on continuous systems techniques.

Corollary 2. Assume system (2) contains equilibrium point
x = 0, the state tracking cost (3) is quadratic,*

1 [
5= [1O -0l der g Lt —zaten)I,. 02
0
with tq = z4(t;) =0, Q = QT >0, and P, = P, >0
defining measures on state error, and uy = 0. There exists
neighborhoods around the equilibrium, N (0), and final time,
N (ts), where optimal actions (8) are equivalent to linear
feedback regulators,

us (t) = R~'h(0)"

4Quadratic cost (12) is assumed so that resulting equations emphasize the
local similarity between SAC controls and LQR [4].

P(t)z(t)aqg Vte N(ty). (13)

Proof: At final time, p(t;) = Pyz(ty). Due to continuity
Assumps. 1-2, this linear relationship between the state and
adjoint must exist for a nonzero neighborhood of the final
time, A (ts), such that

p(t) = P(t) z(t)

Applying this relationship, (8) can formulated as

vt e N(tg). (14)

uy = (h(z)T Pz 2T PTh(z)+ RT)™!
[h(x)T Pz 2T PTh(z)u; + h(z)T Pz ay).

This expression contains terms quadratic in z. For z € N'(0),
these quadratic terms go to zero faster than the linear terms,
and controls converge to (13).

By continuity Assump. 1 and for z € N(0), the dynamics
(1) can be approximated as an LTI system, & = Ax + Bu,
(where A and B are linearizations about the equilibrium).
Applying this assumption and differentiating (14) produces

p=Pz+Pi
=Pz+P(Az+ Bu).
Inserting relation (5) yields
—D,ly(x)" —ATPz =Pz + P(Az+ Buy),
which can be re-arranged such that
0=(Q+P+ATP+PA)z+ PBu,.
When the nominal control u; = 0, this reduces to

0=Q+A"P+PA+P. (15)

Note the similarity to a Lyapunov equation. As mentioned, this
relationship must exist for a nonzero neighborhood, N (t).
Therefore, there exists neighborhoods N (¢f) and A(0) in
which schedule (8) simplifies to a time-varying schedule of
linear feedback regulators (13),> where P(t) can be computed
from (15) subject to P(ty) = P;. |

For the assumptions in Corollary 2, actions (13) are linear
time-varying state feedback laws near equilibrium that can
be used to assess closed-loop stability. Although the corol-
lary is derived in the neighborhood N/ (tf), because (15) is
linear in P, (15) cannot exhibit finite escape time. Through
a global version of the Picard-Lindelof theorem [34], it is
straightforward to verify (15) (and therefore (13)) exists and
is unique for arbitrary horizons and not only for t € N (ty).
Assuming the horizon, 7', is fixed and SAC continuously
applies actions at the (receding) initial time, ¢t = o, (13)
yields a constant feedback law, us(t) = —K x(t), where
K depends on the system’s linearizations, weight matrices,
Q, R, and P, the time horizon, T, and the oy term.® Thus
LTI stability conditions may be applied to facilitate parameter
selection. Similarly, one can also show Corollary 2 yields
a feedback expression in error coordinates for which LTV

SNote the h(0)T = BT term in (13) shows up because the system is
assumed to be in a neighborhood where the dynamics can be linearly modeled.

6Sums—of—Squaures (SOS) and the S-procedure [49], [68] can pre-compute
regions of attraction for (13) and so can determine when SAC should switch
to continuous application of (13).

— e (t) —]

Fig. 3: Configuration variables for the cart-pendulum system.

stability analysis can be used to identify parameters that
guarantee local stability to a desired trajectory, x4(t).

As a final point, if (3) is quadratic and the nominal control,
u1, modeled as applying consecutively computed optimal ac-
tions (13) near equilibrium, (15) becomes a Riccati differential
equation for the closed-loop system (see [27]) and actions (13)
simplify to finite horizon LQR controls [4]. In this case one
can prove the existence of a Lyapunov function ((15) with
P =0) and guarantee stability for SAC using methods from
LQR theory [27] to drive P — 0. As for receding horizon
control, Lyapunov functions can be constructed using infinite
horizons or a terminal cost and constraints that approximate
the infinite horizon cost [2], [14], [25], [29], [38], [44].

B. Computing the Time for Control Application

Theorem 1 provides a schedule of infinitesimal optimal
control actions that minimize control authority while track-
ing a desired sensitivity, g, in cost (3) at any application
time 7,,,; € [to,tr]. By continually computing and applying
optimal actions uJ (7, ;) immediately (at ¢ +tcqic), SAC can
approximate a continuous response. However, it is not always
desirable to act at the beginning of each horizon.

Consider a simple model of a cart-pendulum where the state
vector consists of the angular position and velocity of the
pendulum and the position and lateral velocity of the cart,
x = (0, 0, z., &.). With the cart under acceleration control,
u = (a.), the underactuated system dynamics are modeled as

0
g . a. cos(f)
Flz,u) = Esm(a)f h . (16)
e
ac

The constant h represents the pendulum length, specified as
2m, and ¢ is the gravitational constant. Figure 3 depicts
the relevant configuration variables. Note that any time the
pendulum is horizontal (e.g., 6(t) = grad.), no action can
push 6 toward the origin to invert the pendulum.

To find the most effective time 7, ; € [to + teaic, ty] tO
apply a control action from us, SAC searches for application
times that optimize an objective function,

. dJ
T () = Jus (8)]| + —

+(t—t0)”,
dXF |,

a7

1000

Fig. 4: A schedule of optimal actions, g, is depicted (red
curve) for a T' = 3 s predicted trajectory of the cart-pendulum
system (16) starting at current time ¢y = 0.4 s. These actions
minimize acceleration in driving the mode insertion gradient
toward ag = —1,000. The (purple) mode insertion gradient
curve approximates the change in cost (3) achievable by short
application of uJ (t) at different points in time. The objective,
J.., (blue curve) is minimized to find an optimal time, ¢*, to
act. Waiting to act at 7, ; = t* rather than at 7,,, ; = 9, SAC
generates greater cost reduction using less effort.

defining the trade-off between control efficiency and the cost
of waiting.”

Fig. 4 shows the schedule of optimal actions, u5, computed
for (16) starting at ¢ty = 0.4s into an example closed-loop
SAC trajectory. Actions in ug are designed to drive the mode
insertion gradient (purple curve), which is proportional to the
achievable change in (3), toward oy = —1,000 if switched
to at any time. At ¢ ~ 1.39 s the pendulum passes through
the horizontal singularity and control becomes ineffective, as
indicated by the mode insertion gradient going to 0. The
mode insertion gradient also goes to 0 toward the end of
the trajectory since no finite control action can improve (3)
if applied at the final time. As the curve of J,. & vs time
(blue) indicates, to optimize the trade-off between wait time
and effectiveness of the action, the system should do nothing
and drift until optimal (as defined by (17)) time t* ~ 0.57 s.

C. Computing the Control Duration

Temporal continuity of p, fi, fo and w; provided by
Assump. 1-3 ensures the mode insertion gradient (sensitivity
of the tracking cost) is continuous with respect to duration
around where \; — 07 V 7,,; € [to,ts]. Therefore, there
exists an open, non-zero neighborhood, V; = N (\; — 07),
where the sensitivity indicated by (4) models the change in
cost relative to application duration to first-order (see [12],
[16] and the generalized derivation in Section IV). For finite
durations, A; € V;, the change in tracking cost (3) is locally
modeled as

dJy

AJ ~ —
oL

\i. (18)

m,i

"Implementation examples apply 5 = 1.6 as a balance between time and
control effort in achieving tracking tasks, but any choice of 8 > 0 will work.

dJy
dx;

As uy(7y,,;) regulates g, (18) becomes AJ; ~
ag);. Thus the choice of \; and ag allows the control designer
to specify the desired degree of change provided by actions,
ug (Tm,i). We use a line search with a simple descent condition
to find a \; € V; that yields the desired change [77].

Because the pair (g, A;) determines the change in cost each
action can provide, it is worth noting that a sufficient decrease
condition similar to the one proposed in [12] can be applied
to the choice of \;.

D. Input Saturation

As a benefit of SAC, actions computed from (8) can be
saturated to satisfy min-max constraints using 1) quadratic
programming, 2) by scaling the control vector, or 3) by
scaling components of the control vector. The Appendix
includes an analysis and proves each method for the case
where u; = 0, as in all the examples in this paper. All the
examples to follow use the third option and replace elements
of the control with saturated versions. The approach avoids
all computational overhead and produces constrained optimal
actions that guarantee improvement in cost. For an overview of
the SAC approach outlining the on-line procedure for synthesis
of constrained optimal actions, selection of actuation times,
and resolution of control durations, refer to Algorithm 1.

III. EXAMPLE SYSTEMS

The following section provides simulation examples that
apply SAC on-line in benchmark underactuated control tasks.®
Each example emphasizes a different performance related
aspect of SAC and results are compared to alternative methods.

A. Cart-Pendulum

First, we present 3 examples where SAC is applied to the
nonlinear cart-pendulum (16) in simulated constrained swing-
up. Performance is demonstrated using the cart-pendulum as it
provides a well understood underactuated control problem that
has long served as a benchmark for new control methodologies
(see [7], [10], [42], [46], [63], [80]).

1) Low-Frequency Constrained Inversion: This example
uses SAC to invert the cart-pendulum (16) with low fre-
quency (10 Hz) feedback and control action sequencing to
highlight the control synthesis process. Control constraints,
#. € [-4.8,4.8] &, show SAC can find solutions that re-
quire multiple swings to invert. We use a quadratic track-
ing cost (12) with the state dependent weights, Q(z(t)) =
Diag[200,0, (z.(t)/2)%,50]. to impose a barrier / penalty
function (see [11], [71]) that constrains the cart’s state so
Z. € [—2,2]. Terminal and control costs in (6) and (12) are
defined using P; = 0, R = [0.3], and a horizon of T'= 1.55s.

Results in Fig. 5 correspond to an initial condition with the
pendulum hanging at the stable equilibrium and zero initial
velocity, ®;ni: = (m,0). The red curve shows the penalty
function successfully keeps the cart position within [—2, 2] m.
The simulated trajectory is included in the video attachment.

8We also have trajectory tracking results (e.g, for differential drive robots)
but cannot include them due to space constraints.
9 All examples use wrapped angles € [—7, 7) rad.

Algorithm 1 Sequential Action Control

Initialize g, minimum change in cost AJ,;,;,, current time
teurr, default control duration At;,;:, nominal control wu,
scale factor w € (0, 1), prediction horizon T', sampling time
ts, the max time for iterative control calculations t.4;., the
max backtracking iterations k.., and action iteration .
while ¢.,,.. < oo do
i=1+1
(t07 tf) = (tcur'm teurr + T)
Simulate (x, p) from f; for ¢ € [to,tf]
Compute initial cost Ji jpit
Specify aq
Compute ug from (z, p) using Theorem 1
Specify / search for time, 7,,, ; > to +tcaic, to apply us
Saturate ug (T,
Initialize k = 0, Ji pew = 00
while Jl,new - Jl,im‘t > Admin and k < kg, do
i = WP At
(10, 7f) = (Tm,i — %77—777,,1' +)‘7)
Re-simulate = applying f» for t € 19, 7¢]
Compute new cost Ji pew
k=k+1
end while
w1 (t) = ug (Tm,i) Yt € [10, T¢] N [to +ts, to +ts +teaic)
while ¢.,,., <ty +ts do
Wait()
end while
end while

Algorithm 1: At sampling intervals SAC incorporates feedback
and simulates the system with a nominal (typically null)
control. Optimal alternative actions are computed as a closed-
form function of time. A time is chosen to apply the control
action. A line search provides a duration that reduces cost.

2) High-Frequency Constrained Inversion: In this example,
SAC performs on-line swing-up and cart-pendulum inversion
with high-frequency feedback (1 KHz). To gauge the quality
of the inversion strategy, we compare the on-line, closed-
loop SAC control to the off-line solution from trajectory opti-
mization using MATLAB’s sequential quadratic programming
(SQP) and iLQG implementations. The SQP method is widely
used and underlies the approach to optimization in [17], [21],
[31], [39], [55], [56]. The iLQG [66], [69] algorithm is a
state-of-the-art variant of differential dynamic programming
(DDP). While early versions did not accommodate control
constraints, iLQG achieves a 10 fold speed improvement over
DDP in simulations [40] and has since been applied for real-
time humanoid control [66]. This section compares to a recent
variant that incorporates control constraints through a new
active-set method [67]. We use a publicly available MATLAB
iLQG implementation developed by its authors.'®

10Available at http://www.mathworks.com/matlabcentral/fileexchange/
52069-ilqg-ddp-trajectory-optimization.

%)
T
s
~
ISR
)
~
=

12
time (s)

\— constraint on z.(t)

(@)

states

O
T

()
T

. el e .
2 4 6 8 10 12

time (s)

control

©
T
[:
0

(b)

Fig. 5: SAC inverts the cart-pendulum at a low sampling and control sequencing frequency of 10 Hz (at equilibrium the
dynamics correspond to a simple pendulum with natural frequency of 0.35 Hz). This low-frequency control signal (Fig. 5b)
illustrates how individual actions are sequenced (especially apparent from 7 to 10s). SAC maintains the cart in [—2,2] m
during inversion. Figure 5b also shows SAC automatically develops an energy pumping strategy to invert the pendulum.

states

3.0 35
time (s)

(@)

iLQG, SQP —-—-—-—
10 SAC
— A\
3)
§ 5 2.0 25 3.0 35
\ 7 i
\ time (s)
-10 4

(b)

Fig. 6: SAC can provide control solutions on-line and in closed-loop (these results reflect 1,000 Hz feedback) that achieve
performance comparable to or better than solutions from nonlinear optimal control. For the trajectory depicted, SAC achieves

the same final cost of Jpenq =~ 2,215 as SQP and iLQG.

To highlight the sensitivity of optimal control (i.e., iLQG
and SQP) to local equilibria even on simple nonlinear prob-
lems (and to speed SQP computations), this example uses a
low-dimensional cart-pendulum model. The simplified model
leaves the cart position and velocity unconstrained and ignores
their error weights such that dynamics are represented by the
first two components of (16). In this case the goal is to min-
imize a norm on the cart’s acceleration while simultaneously
minimizing the trajectory error in the pendulum angle relative
to the origin (inverted equilibrium). The objective used to
compare algorithm performance,

1
Toena =5 [o®) = 2a®)y + [. 19)

is applied in discretized form for SQP and iLQG results. This
objective and weights @@ = Diag[1000, 10] and R = [0.3]
also provide the finite horizon cost for SQP and iLQG. All
algorithms are constrained to provide controls #. < |25 &.

Both SQP and iLQG require an a-priori choice of dis-
cretization and optimization horizon. For comparison, results
are provided for different discretizations, dt, and optimization

T=4s T=>5s T=6s

dt min iters 1 iters min iters

01s SQP 13 1,234 22 1052 46 1,346
: iLQG 2 737 9 2,427 13 3,108
005 s SQP 169 | 2,465 32 201 105 251
: ©iLQG 5 908 56 8,052 5 622
003 s SQP 689 | 2,225 | 817 853 1,286 933
’ iLQG 9 1,007 28 2,423 9 688

TABLE II: SQP versus iLQG for swing-up of the cart-
pendulum under varying horizon, 7', and discretization, dt.
All solutions converge to the same optimizer except the gray
results, which converged to low performance local minima.

horizons, T.!" Although SAC runs at 1 KHz, optimal control
results are limited to dt> 0.003s, as SQP computations
become infeasible and consume all computational resources
below this.!? Table II provides the time and number of opti-
mization iterations required for each parameter combination.

The parameter combinations in Table II that do not corre-
spond to gray data converged to the same (best case) optimal

Horizons are based on the assumed time for pendulum inversion, and
discretizations on assumed frequency requirements and linearization accuracy.

I2All results were obtained on the same laptop with Intel® Core™ i7-
4702HQ CPU @ 2.20GHz x 8 and 16GB RAM.

trajectory (Jpena =~ 2,215). Gray data indicate convergence to
an alternate local minima with significantly worse cost. In all
cases with T # 4 s, SQP converges to local minima with costs
JIpend = 3,981 —6,189. While iLQG tends to be less sensitive
to local minima, it converges to the worst local minima with
Jpena = 9,960 for both finer discretizations when T' = 6s.

Similarly, SAC control simulations included a variety of
parameter combinations and moving horizons from T =
0.15s—3s. These solutions yield costs'? ranging from Jpe,q =
2,215—2,660, with the majority of solutions close or equal to
Jpena = 2,215. The SAC solution depicted in Fig. 6 achieves
the best case cost of Jyeng = 2,215 from moving horizons
of T' = 0.28s, with the quadratic cost (12) and parameters
Q =0, P, = Diag[500, 0], and R = [0.3]. Results show SAC
develops closed-loop controls on-line that perform constrained
inversion as well as the best solutions from offline optimal
control. Also, local minima significantly affect SQP and iLQG,
while SAC tends to be less sensitive.

Considering the simplicity of this nonlinear example, it
is noteworthy that both optimal control algorithms require
significant time to converge. While iLQG ranges from minutes
to an hour, with a discretization 3x as coarse as SAC,
SQP requires ~ 12 hours to compute the single, open-loop
optimal trajectory in Fig. 6 utilizing 4 CPU cores. Our C++
implementation of SAC obtains a solution equivalent to the
best results on-line with feedback at 1 KHz in less than %s
using 1 CPU core. '* Computing optimal actions in closed-
form, SAC achieves dramatic gains and avoids the iterative
optimization process, which requires thousands of variables
and constraints in SQP / iLQG.

Finally, we emphasize the closed-loop nature of SAC com-
pared to SQP, which provides an open-loop trajectory, and
iLQG, which yields an affine controller with both feedforward
and feedback components. As the affine controller from iLQG
is only valid in a local neighborhood of the optimal solution
(SAC provides feedback on-line from arbitrary states), SQP
or iLQG must be applied in moving horizon for feedback
comparable to SAC. For improved speed, [67] recommends
a moving horizon implementation using suboptimal solutions
obtained after a fixed number (one) iteration. Though there are
times when iterative routines approach a final solution well
before convergence, this was not the case here. In this simple
nonlinear example, SQP / iLQG trajectories only resembled
the final solution a few iterations before convergence. Hence,
implementing either algorithm in moving horizon is likely
to result in a poor local solution (especially considering
sensitivity to local minima).

3) Sensitivity to Initial Conditions: Using a prediction
horizon T" = 1.2s, SAC was applied to invert the same,
reduced cart-pendulum system from a variety of initial con-
ditions. Simulations used the quadratic tracking cost (12) and
weight matrices from (19). A total of 20 initial conditions for

3In comparing SAC and SQP solutions, costs Jpend are computed from
the SQP weight matrices for both cases.

14As the MATLAB SQP and iLQG implementations utilize compiled and
parallelized libraries, it is unclear how to provide a side-by-side comparison
to the timing results in Table II. To illustrate that SAC is still fast in slower,
interpreted code, we also implemented SAC in Mathematica. Computations
require 5 — 35s and are linear w.r.t. to horizon, 7', and discretization, ts.

-—

Fig. 7: Configuration of the acrobot and pendubot systems.

(t), uniformly sampled over [0, 2 7), were paired with initial
angular velocities at 37 points uniformly sampled over [0, 4 7].

To gauge performance, a 10s closed-loop trajectory was
constructed from each of the 740 sampled initial conditions,
and the state at the final time z(10s) measured. If the
final state was within 0.001 rad of the inverted position and
the absolute value of angular velocity was < 0.001 %, the
trajectory was judged to have successfully converged to the
inverted equilibrium. Tests confirmed the SAC algorithm was
able to successfully invert the pendulum within 10s from all
initial conditions. The average computation time was ~ 1 s for
each 10s trajectory on the test laptop.

B. Pendubot and Acrobot

This section applies SAC for swing-up control of the
pendubot [1], [48], [61] and the acrobot [59], [78], [79].
The pendubot is a two-link pendulum with an input torque
that can be applied about the joint constraining the first
(base) link. The acrobot is identical except the input torque
acts about the second joint. The nonlinear dynamics and
pendubot model parameters match those from simulations in
[1] and experiments in [48]. The acrobot model parameters
and dynamics are from simulations in [78] and in seminal
work [59]. Figure 7 depicts the configuration variables and
the model parameters are below. Each system’s state vector
is x = (01, 91, 02, 02) with the relevant joint torque control,
u= (7).

pendubot: m; = 1.0367 kg m; = 0.5549 kg

l; =0.1508 m I, = 0.2667 m

I.; = 0.1206 m lo =0.1135 m

I, = 0.0031 kg m*> I, = 0.0035 kg m?
acrobot: m; =1 kg mp =1 kg

11 =1m 12 =2 m

lc]=0.5m 102=1m

I, =0.083 kg m®> I, =0.33 kg m?

Due to their underactuated dynamics and many local min-
ima, the pendubot and acrobot provide challenging test sys-
tems for control. As a popular approach, researchers often
apply energy based methods for swing-up control and switch
to LQR controllers for stabilization in the vicinity of the
inverted equilibrium (see [1], [19], [36], [59], [61], [78], and
[79]). We also use LQR controllers to stabilize the systems

(
]

1|‘2 3 4 5

) — bt

- 0:1(t
01(t) 02(1)

~—
3

—~
~

~—

-10

Fig. 8: SAC swings up the pendubot close enough for final
stabilization by the LQR controller. The LQR controller takes
effect at ¢t = 1.89 s. The algorithm inverts the system using
less peak control effort and in less time than existing methods
from literature with the same parameters.

once near the inverted equilibrium. However, the results here
show the SAC algorithm can swing-up both systems without
relying on special energy optimizing methods. The algorithm
utilizes the quadratic state error based cost functional (12),
without modification.

While the pendubot simulations in [1] require control
torques up to a magnitude of 15Nm for inversion, the
experimental results in [48] perform inversion with motor
torques restricted to =7 N'm. Hence, the pendubot inputs are
constrained to 7 € [—7,7]Nm. The acrobot torques are
constrained with 7 € [—15,15] Nm to invert the system using
less than the 20 N m required in [78].

Example simulations initialize each system at the down-
ward, stable equilibrium and the desired position is the
equilibrium with both links fully inverted. Results are based
on a feedback sampling rate of 200 Hz for the pendubot
with @ = Diag[100, 0.0001, 200, 0.0001], P, = 0, and
R = [0.1] and 400 Hz for the acrobot with @ =
Diag[1,000, 0, 250, 0], P, = Diag[100, 0, 100, 0], and
R = [0.1]. The LQR controllers derived offline for final
stabilization, K, = (—0.23, —1.74, —28.99, —3.86) and
Kigr = (—142.73, —54.27, —95.23, —48.42), were calcu-
lated about the inverted equilibrium to stabilize the pendubot
and acrobot systems, respectively. We selected |0, 2| < 0.05
as the switching condition for pendubot stabilization.'> the ac-
robot switched to stabilizing control once all its configuration
variables were < |0.25].

Figure 8 shows the pendubot trajectory (the acrobot and
pendubot solutions are in video attachment). In both cases,
SAC swings each system close enough for successful stabi-
lization. With the same parameters, SAC inverts the pendubot
system using the same peak effort as in experiments from [48]
and less than half that from simulations in [1]. Also, SAC
requires only 3s to invert, while simulations in [1] needed
~ 4s. Where the approach from [1] requires switching be-
tween separately derived controllers for pumping energy into,
out of, and inverting the system before final stabilization, SAC
performs all these tasks without any change in parameters and
with the simple state tracking norm in (12). In the case of the

5More formally, a supervisory controller can switch between swing-up and
stabilizing based on the stabilizing region of attraction [60], [62].

acrobot, SAC inverts the system with the desired peak torque
magnitude of 15N m (% the torque required in simulations
from [78]). These closed-loop results were computed on-line
and required only 1.23 and 4.7s to compute 20 s trajectories
for the pendubot and acrobot systems, respectively.

To invert the pendubot and acrobot in minimal time and
under the tight input constraints, the two most important
parameters for tuning are the desired change in cost due to
each control actuation, ag, and horizon length 7. All examples
specify «g iteratively based on the current initial trajectory
cost under the nominal (null) control as ag = v Ji init-
From experimentation, v € [—15, —1] tends to work best, but
because of the speed of SAC computations, good parameter
values can be found relatively quickly using sampling. These
pendubot and acrobot results use v = —15 and similar
horizons of "= 0.5s and T" = 0.6 s, respectively.

As mentioned earlier, optimal controllers typically use
energy metrics for swing-up of the pendubot and acrobot,
as simple state-tracking objectives yield local minima and
convergence to undesirable solutions. It is noteworthy that
SAC is able to invert both systems on-line and at high fre-
quency considering optimal controllers (SQP/iLQG) generally
fail under the same objective (12).

PART II: EXTENSION TO HYBRID IMPULSIVE SYSTEMS

Part II of this paper extends SAC to systems with hybrid im-
pulsive dynamics. These systems model a more general class
of robotics problems in locomotion and manipulation, which
involve contact and impacts. Such systems are challenging in
optimal control and require specialized treatment and optimal-
ity conditions [35], [65], [66]. Because SAC plans infinitesimal
actions individually, SAC does not need to optimize control
curves over discontinuous segments of the trajectory.

IV. THE HYBRID MODE INSERTION GRADIENT

The SAC algorithm introduced in Section II is limited to
differentiable nonlinear systems because the mode insertion
gradient (4) is subject to Assump. 1. Derivations included
in the following Section IV-A parallel the approach for con-
tinuous systems presented in [41] to develop a first-order
approximation of the variation in state and cost due to pertur-
bations in a nominal control generated by infinitesimal SAC
actions. This section derives an equation for an adjoint variable
similar to (5), but which applies to hybrid impulsive systems.
The formula for the sensitivity of a cost functional (3) to
infinitesimal control actions remains the same as the mode
insertion gradient formula (4) assuming the adjoint variable
is modified for hybrid impulsive systems. As a result (and a
benefit of SAC), the SAC process described in Algorithm 1
remains unchanged for hybrid impulsive systems.

Section V demonstrates the hybrid system calculations on a
1D system and then illustrates the SAC approach in simulated
on-line control of a bouncing ball. The section concludes with
an example in which SAC controls a spring-loaded inverted
pendulum (SLIP) model.

A. Definitions and Notation

The classes of hybrid systems considered here are similar
to those in [65] and are defined such that:'6

1) Q is a finite set of locations.

) M = {M,; C R"},cq is a family of state space
manifolds indexed by gq.

3) U={U, CR™},cq is a family of control spaces.

4) f = {f; € C(My x Uy, TMy)}geo is a family of
maps to the tangent bundle, 7M. The maps f,(x,u) €
T, M, are the dynamics at gq.

5) U = {U; C L(C R,Uy)}qeco is a family of sets of
admissible control mappings.

6) T = {Z, C Rt},co is a family of consecutive
subintervals corresponding to the time spent at each
location q.

7) The series of guards, ® = {®,, € C'(M,R)
(¢,q¢') € Q}, indicates transitions between locations
g and ¢’ when @, ., (z) = 0. The state transitions
according to a series of corresponding reset maps,
Q={Qy €C' (Mg, My):(q,q) € Q}.

This section introduces new notation more appropriate for
hybrid impulsive systems. For the sake of clarity, we avoid
using numerical subscripts for the nominal control, u;, from
Section II. Instead, this section assumes a series of (possibly
null) nominal controls, {u,, € U;lqco, exists for each
location. With an initial location g1, state z(tp) = Tinit €
M,,, and the collection {f, ®,Q}, the location sequence,
q=(q1,...,qr) : 7 € N and intervals, Z, exist and are defined
based on the nominal state trajectory, x,(t) = x4, (t) : ¢ €
{1,...,r},t € Z,, from simulation of,

Tn,g = [(xn,qmun,qi) it €Ty, . (20)

Guards, @, indicate when a transition should occur (they
specify the end of each interval Z,,) and the next location,
gi+1, in the sequence ¢ (based on which guard becomes 0).
Reset maps define the initial condition for evolution of the
state according to (20) in location g;y1 as {znq,, (t]) =
qu7‘I7‘,+1(x"aQi (tz_)) : ti_ 2 supI i’t;’_ 2 ianqi+1}'

Infinitesimal actions in SAC are needle perturbations [50]
relative to a nominal control. To model the effects of these
needle perturbations in the nominal control, uy, (t) = wy, 4, (t) :
t € 7,,, to first order, a perturbed control signal is defined,

Uy = { tn

w

for a (short) duration A = ea. The magnitude of A is specified

as ¢ € RT and the direction by an arbitrary positive scalar

a € R*. Because the perturbed system will eventually be

evaluated for A — 07, assume the perturbation occurs in the

arbitrary location ¢; associated with the state x,,(7) so that

[T — ea, 7] C I,,. Figure 9 depicts the perturbed control and
the corresponding perturbed (1D) state.

:t ¢ [T —ea,T]
it €T —ea,T]

1We assume actions are not applied at switching times, exclude Zeno
behavior, and allow only a single element of ® to be active (zero) at a time
to exclude simultaneous events and potentially indeterminate behavior. These
(and continuity) assumptions guarantee a local neighborhood exists such that
perturbed system trajectories evolve through the same location sequence (as
required in [65]).

g

Un

control

state

T — €a T t'l tll + At; time

Fig. 9: A perturbed control (top) and the corresponding
(hypothetical) state variation (bottom) for a hybrid system.
The nominal system switches locations at time ¢; and the
perturbed system switches at time ¢; + At. Taken in the limit
as ea — 0T, the control perturbation is a needle perturbation
that is equivalent to an infinitesimal action in SAC.

Section IV-B develops a first-order perturbed state model,!”

Tyt €) 2 2, (t) + €U (t) + ofe). 1)

To solve for the direction of state variations, V¥, the section
follows the continuous systems approach in [41] and uses first-
order Taylor expansions to approximate ¥(7).

B. Initial Condition for State Variations

Expanding z,, about ¢t = 7, and (21) about ¢t = 7 —e€a yields
T (1T — €a) = xp(7) — fo, (@n(7),un(7))ea + o(e) (22)
and

T (T,€) = 2 (T — €a) + fy, (xn(T — €a),w)ea + o(€) . (23)

Similarly expanding f, (z, (7 — €a),w) around z,(7),

fqi (xn(T - 60’)7 w) = fqi (mn(7)7 w)
+ D:r:fq1 (xn (T)v w) [.%‘n(T - 6(1)
— (En(T)] + o(zn (T — €a) — xn (7)),
and applying z, (7 — €a) — 2, (7) = — fg, (xn(7), un(7))ea +
o(¢€) from (22), one can simplify (23) so that,
Ty (7€) = 2p (T — €a) + fy, (xn(7), w)ea + o(e). (24)

Plugging (22) into (24) results in a first-order approximation
of the perturbation at time ¢t = 7,

20 (7€) = 2(7)+ (f (2n(r),) foy (2 (7). unm)) catole).
(25)

17The litte-o notation, o(e), indicates terms that are higher than first order
in €. These terms go to zero faster than first-order terms in (21) as € — 0.

Based on (21), the formula (25) indicates the initial direction
for state variations,

W(r) = <f (en(r),0) — fy <xn(7>,un<7>>)a. 6)

C. Propagation of Variations Within a Location

Assuming the variation occurs at t = 7 in location ¢; € Q,
the varied state propagates according to

t
Ty (t, €) = Ty (T, €) +/ foi(@w(s,€),un(s))ds 1t € Iy, .
i @7)
By 21), ¥(t) = Dexw(t,e)|6ﬁo, hence differentiating (27)
develops the variational equation [41], [50],

D (,0) = Doy (7, 0)
/ Dy fur (20 (5,0), 1n (5)) Do (5, 0)ds
w(t / D fyr (n(8), 1 (5)) (s)ds
+ /T Ay, (s)U(s)ds (28)
The term Ay, (t) £ Dy fy (zn(t),un(t)) : t € I, is the

linearization about the (known) nominal state trajectory at g;.
Based on the initial condition (26), (28) is the solution to,

U =A,V:tcT,, (29)

which governs the flow of the first-order state variation at g;.

D. Propagation of Variations Through Locations
Assuming the control perturbation occurs at ¢ = 7 in
location g; € Q, the expression,

T (t,€) = T (t; + At;", €) +/
ti+ AL
= quqwl (mw(ti + At;’ 6))

t
[als.) (5)s
ti+ALT

- QQi7Qi+1 <$w (tia 6) +

t

ti+At;
fq@' ('rw(sv 6), Un(S))dS)

t;

ZtGIq+1,

t
4 / Fgoon (@ (5:€), un(5))ds
ti+ AT

(30)

propagates the varied system to location g;1;. Note ¢; is the
time at which the nominal (unperturbed) state, x,,, transitions
between locations ¢; and ¢; 1, At; = At;(e) is the change in
transition time due to the state variations, and a “—” or “+”
superscript (as in t; + Atzr) indicates the time just before or
after a transition. Figure 9 shows how the control perturbation
causes an update in transition time from ¢; to ¢; + At; for
the perturbed state. The figure depicts a scenario where the
reset map, {2, 4., causes the state’s velocity to reflect (as in
a collision) when @, ;... (z) £ z : © € M,, becomes 0 at

fai (zw(s,€),un(s))ds

As before, differentiating (30) as ¢ — 0 provides the first-
order variational equation for W at ¢;11 due to a control
perturbation at g;,

dxy (t; + At e€)

Dy (t,0) = Dqui,Qi+1(xw(t;70)) d
€ e—0
/ Dy foi (2(8,0), upn(8)) Doy (8,0)ds
ti+ALT
dAtT
L f))
e—0
V(1) = Dy Qg (2 <t;>>[w<t;>
A .
H8 el ()]
e—0
_dAti

te€ly,, .

3D

fq1+1 (xn(tJr)vun(t;r))
The term is

—0
/ Aoy (5)0(s)ds
de le—0°

obtained by locally enforcing the guard equation,
) Tyt + At; ,€)) =0,
using the first-order Taylor expansion of (32) around € — 0,
0= g, g, (xn(t;))
D, g) Fa o6 0) 5

(32)

qiyqi+1 (

e—0
+\I!(ti_)} +o(e).
Applying @, .., (z,(t;)) = 0 in the expansion yields,

dAti D (I)Qz,lhﬂ((t;))\ll(tl_)
de D ¢Q17Q1+1(n(ti) fa: (Tn(ty)un(ti))
(33)

Finally, one can define a new reset term,

e—0

quz7q1'+1 =D qu7qb+1(() I— fql(z) t;))
D CD(quHl(()) :|
Da®g, g, (Tn(t;) fo (an(t;), un(t;)
+ i (@a (), un(t))
D (I)QH‘ZH»I((tz_)) - , (34)
D@y, qip1 (0 (t;)) fas (@n(t;), un(t;))
such that plugging (28) and (33) into (31) reveals
U(t) =g gy [/ Ag (s } 35)
+/+Aql+1(YU (s)ds
t
qulwrl / Aq1+1) S qu‘+1 .
Just as €y, q,., resets the state in (30), Iy, 4, provides a

(linear) reset map for variations that transitions them between
locations in (35).

Rather than calculate ¥ from (35), one can compute varia-
tions from a series of differential equations and resets. When
the control perturbation occurs in location g;, ¥ flows to g; 11
based on,

(fqi (en(P)s0) — foy(2a (7). un<r>>>a: t=re1,
TELU=A,V cte(rt;]
\Il(t:") = HQi;QiJrl\I/(ti_) t= t?_
U=A, v cte (6t
36

Note that if the nominal trajectory evolves through addi-
tional locations, each transition requires reset of U at transition
times according to (34). Variations continue according to the
dynamics linearized about the nominal trajectory. Repeating
computations in rows 2 — 4 of (36) between consecutive
locations, variations can be propagated to t = ty.

E. Sensitivity to Variations

Assume a series of incremental costs, {l,, € C'(M,, x
UgisR)}gieq, such that [= 1y, : ¢t € Z,,. Given (z,,¢,7)
resulting from nominal control, u,,, the objective,

J:/fl(:c(t),u(t))dt,

to

(37

measures performance of the hybrid trajectory. Note that
by appending the incremental costs, l,,, to the dynamics
vectors, fg,, in each location, the hybrid system is translated
to Mayer form with (37) as an appended state. Objects with
a bar refer to appended versions of hybrid system such that
f_Qi = [ZQ'H fqlr]T’ z= [Jv IT}T’ and

Alh = <8 DZl(h)
qi

In Mayer form, it is straightforward to compute the first-
order variation, §.J £ ev, in system performance (37) due to
a needle perturbation in the control at arbitrary (given) time
T € [to, t7]. One need only propagate appended state variations
using the methods just introduced. The first component of
W (t) provides the direction, v(t), of the variation in (37) and
€ is its magnitude. However, computing the variation direction,
v(ty), due to a control perturbation at a different time 7" # T,
requires re-simulation of ¥ from the new initial condition at
U (7'). Hence, the process is computationally intensive.

To compute the first-order variation direction, (), result-
ing from a control needle variation at an arbitrary, unknown
time, 7 € [to,ts], we derive an adjoint system, p,'8 to the
variational system W.!° The two systems are adjoint [41] if,

(znv“n)

a(ﬁ\i):O:ﬁ-@—&—ﬁ-@. (38)
That is, p - ¥ is constant, a property that will be enforced
through differentiation in deriving the adjoint system. With a

terminal condition, p(ts), in which the first element of p(¢y)

18The adjoint belongs to the tangent bundle, 5 € T* M, , such that p(t) :
TeMg, — R, Vt €1y, ,Yq; €q.

19See [41] for a similar derivation of an adjoint in the context of continuous
variations.

is 1 and the remaining elements are 0, the inner product
p(ty) - W(ty) = v(ts). Because of (38), the inner product
is constant and equal to v(ty) at times subsequent to the
control perturbation, p(t) - W(t) = v(ty) Vt € [r,ty], and
p evaluated at any time is the sensitivity of (37) to the state
variation at that time. These properties facilitate analysis of
control perturbations at different times 7 € [to, t7].
Assuming the system is at the (arbitrary) location ¢ € Q at
the perturbation time ¢ = 7, the inner product in (38) yields

p(r)- (fq<xn<7>, w) - fq<xn<r>,un<f>>)a
(39)

p(r) - (1)

= V(tf) .

The initial time, 7, of the control perturbation is arbitrary.
Evaluating (39) at any time 7 € [to,] provides the sensitivity
of (37) to the duration of a control needle perturbation applied
at that time (i.e., it equals v(ty)), similar to the mode insertion
gradient (4). Considering two possible times 7 < 7’ when
needle variations may be applied, (¢ ;) would require separate
simulations of ¢ from [7,¢;] and [/, ¢;].2° In contrast, a single
simulation of p from [ty, 7] evaluated at 7 and 7’ in (39)
provides the performance sensitivity, (¢), for each case.

F. Relation to the Mode Insertion Gradient

In hybrid systems literature [12], [16], [22], [73], [72], the
mode insertion gradient is derived for systems with incremen-
tal costs, [, which do not depend on the control (see (3)), and
the state dimension is fixed, so f, and f; are of the same
dimension (q,¢') € Q. Under these assumptions, the mode
insertion gradient provides the sensitivity of J to insertion
of a different dynamic mode (i.e., switching from f, to the
dynamics f, of an alternate location ¢’ for a short duration
around A — 01). In the case of SAC, the alternate dynamic
modes differ only in control (i.e., fyy £ f,(x,(7),w) and
fq = f4(zn(7),un(7))) and so result in the form of the mode
insertion gradient in (4) for smooth systems. The expression
(39) provides SAC the same information (the sensitivity of a
trajectory cost, .J, to applying an infinitesimal action at some
time) as the form of the mode insertion gradient in (4) but
applies to hybrid impulsive systems with resets.?!

Using the methods presented, it is straightforward to modify
the initial condition of the variational equation (26) to accom-
modate an arbitrary dynamic mode insertion, fy, rather an
a control perturbation. Note the formulas for the variational
flow (36) and its corresponding adjoint equation, which will
be derived in the subsequent subsection, would remain un-
changed. In this case, (39) becomes the more general form of
the mode insertion gradient from hybrid systems literature (as
it considers more than just control perturbations), but applies
to broader classes of hybrid impulsive systems with resets.

200ne may also apply linear transformations to the variational system
simulated from the perturbation at 7 based on superposition of the initial
condition at 7. Variational reset maps would require similar transformation.

21 As one would hope, (39) is equivalent to the mode insertion gradient
formula in (4) when w corresponds to an optimal infinitesimal action, the
incremental costs, [, do not depend on the control (see (3)), and the system
is not hybrid (locations g; and g;41 are the same).

Hence, the derivations and hybrid adjoint and mode insertion
gradient calculations (39) introduced in this section can enable
mode scheduling algorithms like those in [12], [22], [73], [72]
for these larger classes of hybrid and impulsive systems.

G. Adjoint Simulation

To compute the sensitivity of a cost functional to control
perturbations using (39), we use the adjoint, p, and maintain
its interpretation as the cost sensitivity to state variations, as
in p(t) - U(t) = v(ts) Vt € [r,ts]. First, assume the system
is in location g;11 at final time ¢ = ¢; and that the needle
perturbation in the control occurred at ¢ = 7 in the same
location. The state variations will flow forward on [, ;] with
(26) (replacing ¢; with ¢;11 and the dynamics with appended
versions) as an initial condition under dynamics U= Ay, ¥
In this location, p = _AZ:,+ | p satisfies (38) and so is adjomt
to W. With its dynamics defined, p is obtained by simulation
from an appropriate initial / terminal condition. As described
in Section IV-E, choosing p(t¢) = [1, 0, ..., 0]7 € R+
as the terminal condition maintains the desired relationship,
plt) - W (t) = v(t) Vi € [r,).

Now consider the case where the system is in location g;41
at the final time, ¢ = ¢, and that the needle perturbation in the
control occurred at ¢ = 7 in location g;. The variational system
evolves according to (36) The adjoint system follows the same
differential equation, p = qu . P> and terminal condition
as in the previous case. The adjoint flows backwards in time
until the variational equation jumps at ¢;. The corresponding
adjoint reset map is derived by enforcing (38) at ;. As such,
the inner product of the adjoint and variational equations must

be constant from ¢ € [t;,t]],
Ao W) _ A B pley) - B0
dt th—t;

0= 7(tz—'~_) : ﬁququ\ij(ti_) - p(ti_) : \ij(tz_)
p(t;) =TI, . At

The final expression provides the reset map required to flow p
backwards from t+ in location ¢;41 to ¢; in location ¢;. Once
in location ¢;, the flow of the adjoint evolves according to the
dynamics p = —A ,p to remain adjoint to Vuntilt =7 € g
Thus the adjoint satlsﬁes

[1,0,...,0]" it=ts

s) p=—AL b ctetf ty)

p= 1T Y o4 g (40)
p() Hq“qpr] p(tz) = t’L
p=—Alp tternt))

As for the variational equation, one may propagate p between
arbitrary numbers of consecutive modes by repeating the reset
and continuous flow steps.

H. A Terminal Objective

The previous subsection shows that deriving the ad-
joint equation based on the terminal condition p(tf) =
[1,0,...,0]7 results in a constant inner product, p(t) -
W(t) = v(ty) Vt € [r,ty]. It is this choice that allows interpre-
tation of (39) as the sensitivity of the performance objective

(37) to a needle variation in the control that may occur at
any time 7 € [to,ts]. Similarly, 5(7) is the sensitivity of the
objective to state perturbations for T € [to,ts]. This subsection
derives a terminal condition that maintains p(t)- W (¢) = v(ty)
and the meaning of p and (39) when (37) includes termi-
nal cost mapping, m, such that {m, € C'(M,, . R)}sco,
m=mg, 1t €1, and

J:/fl(at(t),u(t))dt—i-m(x(tf)).

to

(41)

Again, by setting the first element of p(¢¢) to 1, the inner
product p(tf) - W(ts) includes the direction of variation in
the incremental cost component, j; "1(z(t), u(t))dt, when the
state is in Mayer form. By addlng the direction of variation
in m(z(ty)), one obtains the new variation direction v(ty) for
(41). The derivative of m(x(ty)) as € = 0,

Dem(z(ty,0)) = Dam(x(ty))¥(ty),

provides the first-order direction of variation in the terminal
cost. Note (42) is an inner product of the (known) gradient
Vm(xz(ty)) and the direction of state variation at the final
time W(¢s). Hence, the variation direction for the performance
objective is provided as v(t;) = [1, Dym(x(ty))] (ty)
when J includes a terminal cost. With the new terminal

condition,
pts) = [1, Dam(x(ts))]",

the adjoint relationship ensures p(t) - ¥(t) and (39) are equal
to V(tf) vt € [, tf] and V1 € [toﬂff].

(42)

(43)

V. HYBRID CONTROL EXAMPLES

This section presents three illustrative examples using the
hybrid methods just described. Section V-A demonstrates cal-
culation of the variational, adjoint, and hybrid mode insertion
gradient (39) equations for a 1D example. Section V-B uses
the hybrid version of SAC (based on the adjoint in (40)) to
control a bouncing ball through impacts and toward a goal
state. Lastly, Section V-C applies SAC to control a the hybrid
spring-loaded inverted pendulum model up a flight of stairs.

A. Variations, Adjoint,
Bouncing Mass

and Control Sensitivity for a 1D

This section computes variational and adjoint equations for
a simple point mass system with impacts. The point mass is
released from a height of zp = 1 m with no initial velocity. It
falls under gravity until it impacts with a flat surface (guard)
at z = Om. The dynamics before and after impact (locations
q1 and g2, respectively) are the same, corresponding to a point
mass in gravity. However, a reset map reflects velocity, z, when
the guard becomes O at impact. The simulation parameters
follow.

System Parameters:

= (2 %) Jo(@,u) = (%, —g+u)
9_981m fQQ(x’u):f%(xvu)
J= ft 2TQuadt Q = Diag[200, 0.01]
Q(h,CJQ() - DZG‘Q[L —1].’E q)th,qz(‘r) =z

1.0
0.5
0.2 0.4 0.6 0.8 1.0
time

-0.5 Zn

Zuw

q1

-1.0 ~ mtel

Fig. 10: The height z(¢) of a mass dropped from 1 m. The mass
follows the nominal trajectory, z,, and bounces at impact due
to an elastic collision. The reset map reflects its velocity in
transitioning from ¢; to go. The purple curve is the varied
trajectory simulated from the hybrid impulsive dynamics with
a needle variation at 7 = 0.1s of duration A = 0.1s (a = 1,
€ = 0.1s), in the nominal control. The variation accelerates
the mass in the z direction at w = —5 ;3. The green curve is
the approximated trajectory based on the first-order model.

W (t)

41 <

Fig. 11: The direction of state (and cost) variations, ¥ =
(v, ¥,, U;), resulting from a needle variation at 7 = 0.1 of
duration A = 0.1s (a = 1, ¢ = 0.1s) in the nominal control.
The control variation accelerates the falling mass in the z
direction at w = —5 7. At all times subsequent the control
variation, V¢ € [1,ty], p(t) - (¢) is equal to the direction of
variation in the cost propagated to the final time, v(¢f). The
state variations in z and Z are discontinuous at the transition
from ¢; to g2, while the cost variation is continuous.

Control Perturbation:

unzog 7=0.1s
a=1 e=0.1s
w=-53% A=0.1s

Figure 10 shows the system’s nominal trajectory (blue
curve) and the varied trajectory resulting from a simulated
needle variation in control. The varied trajectory is computed
from both the first-order variational model (green curve) and
the true, nonlinear hybrid impulsive dynamics (purple curve).
The variation directions resulting from (36) are in Fig. 11. As
Fig. 11 shows, the state variations are discontinuous at impact,
while the direction of the cost variation, v(t), is continuous

p(r) - U(1)
10
5 o @
0.2 04 0.6 0 10
T
5
10

Fig. 12: The value of 5(7)-¥(7) (according to (39)) versus 7.
The term indicates the sensitivity of the performance objective
to the control perturbation, w = —5 % if that perturbation
were to occur at different points 7 € [to,ts]. Before impact,
(39) indicates a short control perturbation will increase cost
(41). After impact, a short control perturbation will lower cost.

over time. The dashed black line in Fig. 11 confirms the
inner product, p - W, is constant and equal to the direction of
the cost variation, v(¢ f), for all time subsequent the control
perturbation, V¢ € [r,t]. Figure 12 shows how this inner
product (the value of (39)) would change if the control
perturbation were applied at different times, 7 € [to, t/].

Results:

ﬁ(T) ' \IJ(T)|T:0.1 =4
V(tf) = [1a 0, O]T'\Tl(tf) =4
At; ~ e x 98t = —0.04s

de le—0
0
-1

Hgy g = (2g_+12u

As asserted earlier, the approximation of the change in cost
(41) from (39) agrees with the first-order approximation of the
change in cost from simulation of W(¢;). The first-order varia-
tional model, z,, + €%, in Fig. 10 closely approximates the true
perturbed trajectory, z,,, simulated from the perturbed control
and the nonlinear dynamics. Additionally, (33) estimates the
impact time of the varied system as ¢ = 0.41s, which is near
the updated impact time of z,, in Fig. 10. Figure 12 shows
that (39) correctly indicates it will be helpful (reduce trajectory
cost according to (41)) to apply the control perturbation (push
the mass toward the ground) after impact, when the ball is
moving away from the ground. Similarly, the figure suggests
it will be detrimental to apply the control perturbation before
impact because it would result in a net gain (positive change)
in trajectory cost according to the first-order model.

Finally, note that the reset map, Il 4,, is only defined
for velocities Z that are non-zero. As is typical for hy-
brid systems, these methods require that some component
of the system’s velocity vector lie in the direction of the
switching surface so as to preclude grazing impacts. The
requirement ensures both (33) and (34) are well defined with

Dy ®g g (@t) fo: (wn(t7), un(t;)) # 09(q,¢') € Q.

hybrid SAC—\
1.2F .
I heuristic SAC /\ /\ /\ /\ ’
10k /_\ /\
» 0.8F
S
8 r
% 0.6F
0.4
0.2H
0.0
8
[e2%
= 4
g @ time (s)
[=]
50
Q

hybrid SAC heuristic SAC

control

—10

(b)

Fig. 13: SAC accelerates a ball 1 m to the right and either up (Fig. 13a) or down (Fig. 13b). In both cases x; (the blue state
curve) reaches the desired point 1 m away. In Fig. 13a, control constraints prohibit the ball from accelerating against gravity,
and so it cannot come to rest at the desired height. Instead, SAC accelerates the ball into the floor to rebound, increasing its
height, z; (purple state curve), to maximize the time spent around the desired height of 1 m. If the smooth version of SAC
is applied as a heuristic (without the hybrid modifications), SAC drives the ball to the desired horizontal position but will
not thrust in the a, direction. Hence, the ball will continuously bounce at the initial height. Similarly, in Fig. 13b, the hybrid
version of SAC successfully reduces energy from the (conservative) system by accelerating the ball into the floor when its
momentum is away from the floor. Though it gets indistinguishably close, the ball cannot come to rest on the ground or it
would result in infinite switching. If the smooth version of SAC is applied as a heuristic, SAC will drive the ball to the desired
horizontal position but cannot reduce the bouncing height below 2, ~ 0.3 m.

B. Control of A Bouncing Ball

This section uses the SAC algorithm with the adjoint
variable (40)*? to develop closed-loop controls on-line that
drive a hybrid impulsive bouncing ball model toward different
desired states. The system state vector consists of the 2D
position and velocity of the ball, © = (xp, 2p, b, 25). The
system inputs are constrained accelerations, v = (az, a,) :
a; € [-10,10] %, a. € [-10,0] 33, such that the dynamics
are

Tp
[q(x7 U) = jz
a; — g

Vg e Q.

As in the previous example, impacts are conservative and so
reflect velocity orthogonal to the surface.

The SAC algorithm is initialized from half a meter off the
ground, Z;,;+ = (0, 0.5m, 0, 0), and results are presented for
two different tracking scenarios assuming a flat floor at z, =
Om as the impact surface (guard). In the first case, SAC uses
the quadratic tracking cost (12) with @ = Diag[0, 10, 0, 0],
P = Diag[10, 0, 0, 0], and applies R = Diag[1, 1] with
T = 0.5s, v = —10, and feedback sampling at 100 Hz.>

22The first term of 5 is always 1 and can be stripped to obtain an
unappended hybrid adjoint, p, which applies to unappended dynamics as in
(4) when the incremental cost does not depend on the control (as in (3)).

2The hybrid examples specify SAC with parameters that cause it to skip
the (optional) control search process in Section II-B as it is unnecessarily in
these cases and complicates analysis.

In this scenario, SAC is set to minimize error between the
trajectory of the ball and a desired state a meter to the
right of its starting position and one meter above the ground,
2qg = (1m, 1m, 0, 0). The 10s closed-loop tracking results
included in Fig. 13a require 0.21s to simulate using the C++
SAC implementation from Section III.

Accelerating the ball in the horizontal directions, SAC
drives it the desired horizontal position 1 m away. Due to the
control constraints on a,, however, SAC cannot achieve the
desired height. Instead, Fig. 13a shows SAC accelerates the
ball into the ground to increase its height after impact. The
behavior cannot be achieved without the hybrid modifications
to the adjoint variable (40) introduced here. Without the jump
terms in the adjoint simulation (from reset map II, ,), the
mode insertion gradient (4) does not switch signs at impact
events as in Fig. 12 and so does not accurately model the
sensitivity to control actions.

A similar demonstration in Fig. 13b shows SAC tracking
the desired state, x4 = (1m, 0, 0, 0), which is also 1m
from the starting position but on the ground. Results take
0.29s to compute and are based on all the same parameters
previously mentioned but with @ = Diag[0, 0, 0, 10], so
that the cost includes errors on horizontal position (from the
P matrix specifying the terminal cost) and vertical velocity.

Because the system is conservative, SAC must act in the
a, direction to remove energy. As SAC can only accelerate
the ball into the ground, the algorithm waits until the ball’s
momentum carries it upward and away from the floor to apply

— 2y————

Tt |

Fig. 14: Planar configuration variables for the SLIP.

control, a.. Lastly, if one applies the smooth version of SAC
from Section II-A to this control scenario, the algorithm will
control the ball to the desired horizontal point. While it will
reduce the height to approximately 0.3 m, it ceases to make
further progress (see Fig. 13b). These findings highlight the
fact that (4) provides a poor model for hybrid systems with
many switching events.

C. Control of a Spring-Loaded Inverted Pendulum

This final example considers control for the spring-loaded
inverted pendulum (SLIP), a hybrid system used to model the
dynamics of robotic locomotion. The SLIP is popular because
it is a lower dimensional representation of the center of mass
dynamics during running for a variety of species [20], [64].
This section uses a 12 dimensional (9 states and 3 controls)
model that is similar to the one in [6]. Figure 14 depicts the
SLIP’s planar configuration variables.

The SLIP’s dynamics are divided into flight and stance
modes. In our case, the state vector is the same for each
mode and includes the 3D position / velocity of the mass,
the 2D position of the spring endpoint (“toe”), and a book-
keeping variable, ¢ € {q1,¢2}, tracking the current hybrid
location (indicating if the SLIP is in flight or stance), z =
(s Lony Y, Ums Zms 2ms Tt, Yt, ¢). The control vector is 3
dimensional, u = (u¢,,us,,us,), composed of toe velocity
controls, which can only be applied in flight, and the leg thrust
during stance. The controls are further constrained so the toe
velocities are € [—5,5] % and |u,| < 30N.

Ignoring the location variable, g, the stance dynamics,

T
(k(lﬂfl::)‘i’ué;)(wmfxt)
mls
Ym
(k(lo—=ls)+us) (Ym—yt)
’V'VLls
Zm

k(lo—ls)4+us)(zm—=z
(k(lo k)-:-ms)(G)_g

0
0

define the first hybrid mode, and flight dynamics,

fq1 (LC, u) = s (44)

fqz(x7u) = (x’ma 07 y’m7 07 27717 -9, iC'rn + utza ym + uty)7

(45)
define the second. These dynamics depend on gravity, g, mass,
m = 1kg, spring constant, k = 100%, the ground height at
the toe location, z4, and the leg length during stance,

ls = \/(xm - xt)2 + (Ym — yt)2 + (2m — ZG)z'

(46)

When [= [y, the guard equations,

zc)

lO(zm -
— RG>

ls

cross zero to indicating the transition from stance to flight
mode (and vice versa). Upon transitioning to flight, the leg
length becomes fixed at the resting length, [, = 1m. Reset
maps €24, 4, and Qg 4, leave the state unchanged other than
to update the location variable, q.

Figure 15 includes a sample trajectory based on a quadratic
objective with Q = Diag[0,70,0,70,50,0,0,0], R = I,
P =0T = 0.6s, and oy = —10. The figure depicts
SAC controlling the SLIP up a staircasi, which is approx-
imating using logistic functions, z4 = Z %.
These functions produce stairs with a slope of ~ 0.71 (a 0.5 m
rise every 0.7m). As the rise of each step is equal to half
the SLIP body length, SAC must coordinate leg motion to
avoid tripping on the stair ledges. With the desired trajectory,
rg = (0,0.7%,0,0.7% ,2¢ +1.4m,0,0,0), SAC drives
the SLIP along a diagonal path up the staircase at roughly
constant velocity and relatively uniform average height above
the ground. The 10s trajectory simulates in ~ 1.6s on a
laptop with feedback at 100 Hz.2* The hybrid SAC controller
successfully navigates the SLIP over a variety of other terrain
types, including sloped sinusoidal floors, using these same
parameters and with similar timing results. More recent results
confirm SAC also extends to two legged compliant walking
models from [20]. Both these varied terrain SLIP locomotion
and compliant walking examples are in the video attachment.

The SLIP is well-studied, and researchers have already
derived methods that yield stable hopping by controlling the
SLIP leg to desired touchdown angles. These methods typi-
cally assume the leg can swing arbitrarily fast to implement
analytically computed touchdown angles at each step and
ignore possible collisions with terrain during swing. This
example shows that the hybrid version of SAC can drive the
SLIP over varying terrain while controlling the motion of the
leg to avoid tripping. We note that SAC implementations like
the one introduced here may prove useful in controlling robots
that (mechanically) emulate the SLIP [13], [28], [53]. Due to
physical constraints, these robots are limited in how well they
can approximate the SLIP model assumptions and so SLIP-
based control may prove ineffective. In contrast, SAC can be
applied to the actual robot model (or a more accurate model)
and does not rely on the simplifying SLIP assumptions to
control locomotion.

Pga,q1 (z) = Pqr 4 () = 2m — 47

VI. CONCLUSIONS AND FUTURE WORK

This paper contributes a model-based algorithm, Sequential
Action Control (SAC), that sequences optimal actions into a
closed-loop, trajectory-constrained control at roughly the rate
of simulation. While the approach is new and further study is
required to define properties like robustness and sensitivities,
we have tested SAC on an array of problems spanning several

24The process is artificially slowed by impact event detection code, which
we are still developing.

(@
Fig. 15: A time lapse showing the SLIP at 0.5s increments (Fig. 15a) under SAC controls (Fig.

categories of traditionally challenging system types. These
benchmark trials confirm the algorithm can outperform stan-
dard methods for nonlinear optimal control and case specific
controllers in terms of tracking performance and speed.

For the continued development of SAC, a number of di-
rections have been identified as possible future work. For
instance, although we show SAC can avoid local minima
that affect nonlinear trajectory optimization, the method is
local in the sense that it cannot guarantee globally optimal
solutions through state space (no method can in finite time for
the nonlinear / non-convex problems here). As such, despite
the wide range of systems SAC can control, there are others
that will prove difficult. To increase applicability, SAC can be
combined with global, sample-based planners to provide a fast
local planner that develops constrained solutions that satisfy
dynamics. Such methods would allow SAC to apply even in
very complicated scenarios such as those required to develop
trajectories for humanoids [24], [66].

To better automate control policy generation and reduce
required user input, SAC needs tools for parameter tuning, es-
pecially ones that provide stability. As mentioned in Section II,
SAC parameters can be selected to provide local stability
around equilibrium based on a linear state feedback law for
optimal actions (13). Sums-of-Squares (SOS) tools (e.g., the
S-procedure) [49], [68] seems a good candidate to automate
parameter tuning and the generation of regions of attraction.

In addition to the applications mentioned, we note that SAC
applies broadly to auto-pilot and stabilization systems like
those in rockets, jets, helicopters, autonomous vehicles, and
walking robots [18], [24], [45], [57], [70]. It also naturally
lends itself to shared control systems where the exchange
between human and computer control can occur rapidly (e.g.,
wearable robotics and exoskeletons [23], [30], [33], [43], [76]).
It offers a reactive, on-line control process that can reduce
complexity and pre-computation required for robotic perching
and aviation experiments in [8], [9], [68]. Its speed may facil-
itate predictive feedback control for new flexible robots [37],
[58] and systems that are currently restricted to open-loop.
It offers real-time system ID and parameter estimation for

30f - .
20 o '.: .
10 I | I
) 1 1 . I 'S N | 1] "
£ D B iz,
S 2 4 6 i 8 © 10
time (s)

-10

Ut,, , Ut,
-20 Us
-30

(b)

15b).

nonlinear systems [51], [74], [75]. These potential applications
merit study and further development of the SAC approach.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant CMMI 1200321. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Thamer Albahkali, Ranjan Mukherjee, and Tuhin Das. Swing-up control
of the pendubot: an impulse-momentum approach. IEEE Transactions
on Robotics, 25(4):975-982, 2009.

Frank Allgower, Rolf Findeisen, and Zoltan K Nagy. Nonlinear model
predictive control: From theory to application. Journal of the Chinese
Institute of Chemical Engineers, 35(3):299-316, 2004.

Frank Allgower and Alex Zheng. Nonlinear model predictive control,
volume 26. Birkhduser Basel, 2000.

Brian D. O. Anderson and John B. Moore. Optimal control: linear
quadratic methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1990.

Alex R Ansari and Todd D Murphey. Control-on-request: Short-burst
assistive control for long time horizon improvement. In American
Control Conference, 2015.

Omiir Arslan. Model based methods for the control and planning of
running robots. PhD thesis, Bilkent University, 2009.

Karl Johan Astrom and Katsuhisa Furuta. Swinging up a pendulum by
energy control. Automatica, 36(2):287-295, 2000.

Andrew J Barry. Flying between obstacles with an autonomous knife-
edge maneuver. Master’s thesis, MIT, 2012.

Andrew J. Barry, Tim Jenks, Anirudha Majumdar, Huai-Ti Lin, Ivo G.
Ros, Andrew Biewener, and Russ Tedrake. Flying between obstacles
with an autonomous knife-edge maneuver. In IEEE Conference on
Robotics and Automation, Video Track, 2014.

Anthony M Bloch, Melvin Leok, Jerrold E Marsden, and Dmitry V
Zenkov. Controlled lagrangians and stabilization of the discrete cart-
pendulum system. In IEEE Conference on Decision and Control (CDC)
and the European Control Conference (ECC), pages 6579-6584, 2005.
Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

Tim M Caldwell and Todd D Murphey. Projection-based optimal mode
scheduling. In IEEE Conference on Decision and Control, 2013.

B. Dadashzadeh, H.R. Vejdani, and J. Hurst. From template to anchor:
A novel control strategy for spring-mass running of bipedal robots. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 25662571, Sept 2014.

[2]

[3]
[4]

[5]

[6]
[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Moritz Diehl, Rishi Amrit, and James B Rawlings. A Lyapunov function
for economic optimizing model predictive control. IEEE Transactions
on Automatic Control, 56(3):703-707, 2011.

Magnus Egerstedt, Yorai Wardi, and Henrik Axelsson. Optimal control
of switching times in hybrid systems. In International Conference on
Methods and Models in Automation and Robotics, 2003.

Magnus Egerstedt, Yorai Wardi, and Henrik Axelsson. Transition-time
optimization for switched-mode dynamical systems. IEEE Transactions
on Automatic Control, 51(1):110-115, 2006.

Brian C Fabien. Implementation of a robust SQP algorithm. Optimiza-
tion Methods & Software, 23(6):827-846, 2008.

Paolo Falcone, Francesco Borrelli, Jahan Asgari, H Eric Tseng, and
Davor Hrovat. Predictive active steering control for autonomous vehicle
systems. IEEE Transactions on Control Systems Technology, 15(3):566—
580, 2007.

Isabelle Fantoni, Rogelio Lozano, and Mark W Spong. Energy based
control of the pendubot. [EEE Transactions on Automatic Control,
45(4):725-729, 2000.

Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant leg
behaviour explains basic dynamics of walking and running. Proceedings
of the Royal Society B: Biological Sciences, 273(1603):2861-2867,
2006.

Philip E Gill, Walter Murray, and Michael A Saunders. SNOPT: An
SQP algorithm for large-scale constrained optimization. SIAM journal
on optimization, 12(4):979-1006, 2002.

Humberto Gonzalez, Ram Vasudevan, Maryam Kamgarpour, S Shankar
Sastry, Ruzena Bajcsy, and Claire J Tomlin. A descent algorithm for the
optimal control of constrained nonlinear switched dynamical systems. In
ACM Conference on Hybrid Systems: Computation and Control, pages
51-60, 2010.

R.D. Gregg, T.W. Bretl, and M.W. Spong. A control theoretic approach
to robot-assisted locomotor therapy. In IEEE Conference on Decision
and Control (CDC), pages 1679-1686, Dec 2010.

Robert D Gregg, Adam K Tilton, Salvatore Candido, Timothy Bretl, and
Mark W Spong. Control and planning of 3-d dynamic walking with
asymptotically stable gait primitives. [EEE Transactions on Robotics,
28(6):1415-1423, 2012.

Lars Griine and Jirgen Pannek. Nonlinear model predictive control.
Springer, 2011.

John Hauser. “A projection operator approach to the optimization of
trajectory functionals”. In IFAC World Congress, Barcelona, Spain, Jul.
2002.

Jodo P Hespanha. Linear systems theory. Princeton university press,
2009.

Jonathan W Hurst, Joel E Chestnutt, and Alfred A Rizzi. The actuator
with mechanically adjustable series compliance. IEEE Transactions on
Robotics, 26(4):597-606, 2010.

Ali Jadbabaie and John Hauser. On the stability of receding horizon
control with a general terminal cost. IEEE Transactions on Automatic
Control, 50(5):674-678, 2005.

Saso Jezernik, Gery Colombo, and Manfred Morari. Automatic gait-
pattern adaptation algorithms for rehabilitation with a 4-dof robotic
orthosis. IEEE Transactions on Robotics and Automation, 20(3):574—
582, 2004.

T.A Johansen, T.I Fossen, and S.P. Berge. Constrained nonlinear
control allocation with singularity avoidance using sequential quadratic
programming. [EEE Transactions on Control Systems Technology,
12(1):211-216, Jan 2004.

Elliot R. Johnson and Todd D. Murphey. Scalable Variational Integrators
for Constrained Mechanical Systems in Generalized Coordinates. /EEE
Transactions on Robotics, 25(6):1249-1261, 2009.

Hami Kazerooni, Andrew Chu, and Ryan Steger. That which does
not stabilize, will only make us stronger. The International Journal
of Robotics Research, 26(1):75-89, 2007.

Hassan K. Khalil and J.W. Grizzle. Nonlinear systems, volume 3.
Prentice hall Upper Saddle River, 2002.

Paul Kulchenko and Emanuel Todorov. First-exit model predictive
control of fast discontinuous dynamics: Application to ball bouncing.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 2144-2151, 2011.

Xu-Zhi Lai, Jin-Hua She, Simon X Yang, and Min Wu. Comprehensive
unified control strategy for underactuated two-link manipulators. Sys-
tems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics,
39(2):389-398, 2009.

Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura Margheri,
Maurizio Follador, and Paolo Dario. Soft robot arm inspired by the
octopus. Advanced Robotics, 26(7):709-727, 2012.

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

(571

(58]

[59]
[60]

[61]

[62]

[63]

Jay H Lee. Model predictive control: review of the three decades of
development. International Journal of Control, Automation and Systems,
9(3):415-424, 2011.

Sven Leyffer and Ashutosh Mahajan. Software for nonlinearly con-
strained optimization. Wiley Encyclopedia of Operations Research and
Management Science, 2010.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator
design for nonlinear biological movement systems. In International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO),
pages 222-229, 2004.

Daniel Liberzon. Calculus of variations and optimal control theory: a
concise introduction. Princeton University Press, 2012.

Rogelio Lozano, Isabelle Fantoni, and Dan J Block. Stabilization of
the inverted pendulum around its homoclinic orbit. Systems & control
letters, 40(3):197-204, 2000.

Anastasia Mavrommati, Alex R Ansari, and Todd D Murphey. Optimal
control-on-request: An application in real-time assistive balance control.
In ICRA workshop on open source software, 2015.

David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM
Scokaert. Constrained model predictive control: Stability and optimality.
Automatica, 36(6):789-814, 2000.

Luis Mejias, Srikanth Saripalli, Pascual Campoy, and Gaurav S
Sukhatme. Visual servoing of an autonomous helicopter in urban areas
using feature tracking. Journal of Field Robotics, 23(3-4):185-199,
2006.

Nenad Muskinja and Boris Tovornik. Swinging up and stabilization of
a real inverted pendulum. /EEE Transactions on Industrial Electronics,
53(2):631-639, 2006.

D Subbaram Naidu. Optimal control systems, volume 2. CRC press,
2002.

Yury Orlov, Luis T Aguilar, Leonardo Acho, and Adain Ortiz. Swing
up and balancing control of pendubot via model orbit stabilization:
Algorithm synthesis and experimental verification. In 45th IEEE
Conference on Decision and Control, pages 6138-6143. IEEE, 2006.
Pablo A Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis, Cali-
fornia Institute of Technology, 2005.

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F.
Mischenko. The mathematical theory of optimal processes,
K.N. Trirogoff (transl.), L.W. Neustadt (ed.). Interscience Publishers,
New York, 1962.

Luc Pronzato. Optimal experimental design and some related control
problems. Automatica, 44(2):303-325, 2008.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source
Robot Operating System. In ICRA workshop on open source software,
volume 3, 2009.

Marc H Raibert. Legged robots.
29(6):499-514, 1986.

Anil V Rao. A survey of numerical methods for optimal control.
Advances in the Astronautical Sciences, 135(1):497-528, 2009.

Klaus Schittkowski. NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone
line search-users guide, version 2.2, 2006.

Klaus Schittkowski. A robust implementation of a sequential quadratic
programming algorithm with successive error restoration. Optimization
Letters, 5(2):283-296, 2011.

R.B. Schroer. Flight control goes digital [part two, NASA at 50].
Aerospace and Electronic Systems Magazine, IEEE, 23(10):23-28, 2008.
Robert F Shepherd, Filip Ilievski, Wonjae Choi, Stephen A Morin,
Adam A Stokes, Aaron D Mazzeo, Xin Chen, Michael Wang, and
George M Whitesides. Multigait soft robot. Proceedings of the National
Academy of Sciences, 108(51):20400-20403, 2011.

Mark W Spong. The swing up control problem for the acrobot. IEEE
Control Systems, 15(1):49-55, 1995.

Mark W Spong. Underactuated mechanical systems. In Control
Problems in Robotics and Automation, pages 135-150. Springer, 1998.
Mark W Spong and Daniel J Block. The pendubot: A mechatronic
system for control research and education. In /EEE Conference on
Decision and Control, volume 1, pages 555-556, 1995.

Mark W Spong, Peter Corke, and Rogelio Lozano. Nonlinear control
of the reaction wheel pendulum. Automatica, 37(11):1845-1851, 2001.
B Srinivasan, P Huguenin, and Dominique Bonvin. Global stabilization
of an inverted pendulum—control strategy and experimental verification.
Automatica, 45(1):265-269, 2009.

Communications of the ACM,

[64] Manoj Srinivasan and Andy Ruina. Computer optimization of a minimal
biped model discovers walking and running. Nature, 439(7072):72-75,
2005.

Héctor J Sussmann. A maximum principle for hybrid optimal control
problems. In IEEE Conference on Decision and Control, volume 1,
pages 425-430, 1999.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabiliza-
tion of complex behaviors through online trajectory optimization. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4906—4913, 2012.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited
differential dynamic programming. In [EEE International Conference
on Robotics and Automation (ICRA), pages 1168-1175. IEEE, 2014.
Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts.
LQR-trees: Feedback motion planning via sums-of-squares verification.
The International Journal of Robotics Research, 2010.

Emanuel Todorov and Weiwei Li. A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear stochastic
systems. In American Control Conference (ACC), pages 300-306, 2005.
Matthew Turpin, Nathan Michael, and Vijay Kumar. Trajectory design
and control for aggressive formation flight with quadrotors. Autonomous
Robots, 33(1-2):143-156, 2012.

Richard Vinter. Optimal control. Springer, 2010.

Yorai Wardi, M Egerstedt, and P Twu. A controlled-precision algorithm
for mode-switching optimization. In IEEE Conference on Decision and
Control (CDC), pages 713-718, 2012.

Yorai Wardi and Magnus Egerstedt. Algorithm for optimal mode
scheduling in switched systems. In American Control Conference, pages
4546-4551, 2012.

Andrew D Wilson, J.A. Schultz, and Todd D Murphey. Trajectory opti-
mization for well-conditioned parameter estimation. /IEEE Transactions
on Automation Science and Engineering, 12(1):28-36, 2015.

Andrew D Wilson, Jarvis A Schultz, Alex R Ansari, and Todd D Mur-
phey. Real-time trajectory synthesis for information maximization using
sequential action control and least-squares estimation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015.

Kyle N Winfree, Paul Stegall, and Sunil K Agrawal. Design of a
minimally constraining, passively supported gait training exoskeleton:
ALEX II. In IEEE International Conference on Rehabilitation Robotics
(ICORR), pages 1-6, 2011.

SJ Wright and J Nocedal. Numerical optimization, volume 2. Springer
New York, 1999.

X Xin and M Kaneda. Analysis of the energy-based swing-up control
of the acrobot. International Journal of Robust and Nonlinear Control,
17(16):1503-1524, 2007.

Xin Xin and Taiga Yamasaki. Energy-based swing-up control for a
remotely driven acrobot: Theoretical and experimental results. IEEE
Transactions on Control Systems Technology, 20(4):1048-1056, 2012.
Ji-Hyuk Yang, Su-Yong Shim, Jung-Hun Seo, and Young-Sam Lee.
Swing-up control for an inverted pendulum with restricted cart rail
length. International Journal of Control, Automation and Systems,
7(4):674-680, 2009.

[65]

[66]

[67]
[68]
[69]
[70]

[71]
[72]

[73]
[74]

[75]

[76]

(771

[78]
[79]

[80]

APPENDIX
A. Input Constraints

This section provides several means to incorporate min-
max saturation constraints on elements of the optimal action
vector. To simplify the discussion and analysis presented, it
is assumed that the nominal control vector u; = 0, as in the
implementation examples.

1) Control Saturation — Quadratic Programming: While
more efficient alternatives will be presented subsequently, the
most general way to develop controls that obey saturation con-
straints is by minimizing (48) subject to inequality constraints.
The following proposition provides the resulting quadratic
programming problem in the case of u; = 0.

Proposition 1. At any application time s = T,, ;, a control
action exists that obeys saturation constraints from the con-

strained quadratic programming problem

o1 1
ug (s) = arg min [[T(s) us(s) — aal® + 5 Jua(s)[7 (48)

uz(s)

such that Wpyin g < uz’k(s) < Umaz,k Vk € {1,...,m}. The
term TT £ h(z)T p , and values upmin x and Umaz 1. bound

the k' component of us (s).

Proof: For control-affine systems with the null vector as
the nominal control, the mode insertion gradient (4) simplifies
to

dJq

oF = P(3) (fals,) = fi(s)

= p(s)" h(x(s)) uz (s)
= (I(s)",uz(s)).
The final relation is stated in terms of an inner product.

With the linear mode insertion gradient (49), minimizing
(48) subject t0 Upin,k < Uy 2 (8) < Umazk VE is equivalent
to optimizing (6) at time s to find a saturated action, uj (s).

|

Proposition 1 considers a constrained optimal action, uJ(s),
at a fixed time. However, the quadratic programming approach
can be used to search for the schedule of solutions 4 that obey
saturation constraints (though it would increase computational
cost). These quadratic programming problems can be solved
much more efficiently than the nonlinear dynamics constrained
programming problems that result when searching for finite
duration optimal control solutions. As described next, even the
limited overhead imposed by these problems can be avoided
by taking advantage of linearity in (8).

2) Control Saturation — Vector Scaling: Optimal actions
computed from (8) are affine with respect to oy and linear
when u; = 0. Thus, scaling o4 to attempt more dramatic
changes in cost relative to control duration produces actions
that are scaled equivalently.”> Consider the k*"* component of a
control action vector, u; ; (s), has minimum and maximum sat-
uration constraints encoded by the k' component of saturation
vectors of the form wmin.r < 0 < Umazr Yk € {1,...,m}.
The linear relationship between uJ (s) and oy implies that if
any component Uy, (8) > Umazk OF Us 1 (8) < Upmin, k. ONE
can choose a new Bzd that positively scales the entire control
vector until constraints are satisfied. If the worst constraint
violation is due to a component u;k(s) > Umaz,k» choosing
Oqg = Qg umm,k/u;k(s) will produce a positively scaled
ug (s) that obeys all constraints. Linearity between ug (s)
and a4 implies that this factor can be directly applied to
control actions from (8) rather than re-calculating from &4.
To guarantee that scaling control vectors successfully returns
solutions that obey constraints and reduce cost (3), constraints
must be of the form Umin, ik < 0 < Upmaqz,i VK.

(49)

Proposition 2. For the choice aq < 0, a control action uj(s)
evaluated anywhere that T'(s)” = h(z(s))T p(s) # 0 € R™*!
will result in a negative mode insertion gradient (4) and so
can reduce (3).

2 Generally, scaling g will not equivalently scale the overall change in
cost because the neighborhood, V;, where the (18) models the change in cost
can change. This would result in a different duration A; for the scaled action.

Proof: Combining (8) with (49), optimal actions that
reduce cost result in a mode insertion gradient satisfying

j;ﬁ —(T(s)", (T()7T(s) + B7) " T(s))

=y ||F(8)T||?F(S)TF(S)+RT)—1 <0.

The outer product, I'(s)7T'(s), produces a positive semi-
definite symmetric matrix. Adding R > 0 yields a pos-
itive definite matrix. Because the inverse of a positive
definite matrix is positive definite, the quadratic norm
IT(s) T|| ()77 (s)+RT)-1 > 0 for T'(s)T # 0 € R™*L
Therefore, only cﬂowes ag < 01in (9) produce optimal control

actions that make j/‘\]}r
K3

< 0 and by (18) can reduce cost (3).
|
3) Control Saturation — Element Scaling: For multidi-
mensional vectors, scaling can produce overly conservative
(unnecessarily small magnitude) controls when only a single
vector component violates a constraint. To avoid the issue
and reap the computational benefits of vector scaling, one
can choose to scale the individual components of a multi-
dimensional action, uy(s), by separate factors to provide
admissible solutions (saturated control actions that reduce (3)).
The following proposition presents conditions under which this
type of saturation guarantees admissible controls.

Proposition 3. Assume R = cI where I is the identity
and ¢ € RY, ag € R, uy = 0, and separate saturation
constraints Umingk < 0 < Umazr Vk € {1,...,m} apply
to elements of the control vector. The components of any
control derived from (8) and evaluated at any time, s, where
L(s)T £ h(z(s)T p(s) # 0 € R™*L can be independently
saturated. If ||ug(s)|| # O after saturation, the action is
guaranteed to be capable of reducing cost (3).

Proof: For the assumptions stated in Proposition 3,
ug(s) = (T(s)'T(s) + RM)'T(s)Tay.

The outer product, I'(s)TT(s), produces a rank 1 positive
semi-definite, symmetric matrix with non-zero eigenvalue
= I'(s)I'(s)T associated with eigenvector I'(s)T. Eigenvalue
decomposition of the outer product yields I'(s)TT(s) =
S D S~1, where the columns of S corresponds to the eigenvec-
tors of I'(s)TT(s) and D is a diagonal matrix of eigenvalues.
For R = R” = c1, actions satisfy

ug(s) =(SDS 4 c¢I)7 1T (s)Tay
=(SDS ' +cSTISHT(s) g
=S (D+c)SH T (s)Tay
=S(D+cI)7'S7IT(s)Tay.

The matrix D + ¢/ in the final statement must be sym-
metric and positive-definite with eigenvalues all equal to ¢
except for the one associated with the nonzero eigenvalue of
D. This eigenvalue, I'(s)['(s)T + ¢, applies to eigenvectors
that are scalar multiples of I'(s)T. After inversion, matrix
S (D+cI)~' S~ must then have an eigenvalue m
Since inversion of a diagonal matrix leaves its eigenvectors
unchanged, the eigenvalue scales I'(s)”. Therefore, the matrix
S (D +cI)~' S7! directly scales its eigenvector, I'(s)”', and

Qg

ug(s) = T o I'(s)".

(50)

For any ag € R™, ug (s) will be a negative scalar multiple
of I'(s)T. Because two vectors € R™ can at most span a 2D
plane £ C R™, the Law of Cosines (the angle, ¢, between
vectors u and v can be computed from cos(¢) = %)
can be applied to compute the angle between any us (s) and
I'(s)”. The Law of Cosines verifies that control (50) is 180°
relative to I'(s)T. Therefore, (50) corresponds to the control of
least Euclidean norm that minimizes (49) and so maximizes
the expected change in cost. The Law of Cosines and (49)
also imply the existence of a hyperplane, h, = {v(s) €
R™ | (T'(s)T,v(s)) = 0}, of control actions, v(s), orthogonal
to both (50) and T'(s)”. This hyperplane divides R™ into
subspaces composed of vectors capable of reducing cost (3)
(they produce a negative mode insertion gradient based on
inner product (49)) and those that cannot.

To show that saturation returns a vector in the same sub-
space as (50), one can define the control in terms of component
magnitudes, a = (ay, ..., a,), and signed orthonormal bases
from R™, é = (é1,...,6m), so that uy(s) = aé. The Law
of Cosines confirms that u(s) can be written only in terms
of components aj and signed basis vectors é; within acute
angles of the control. Briefly, the law indicates an aj; cannot
be associated with any basis, éx, at 90° of the control because
it would require (é;,ug (s)) = 0, implying aj, = 0. Similarly,
an aj cannot be associated with an é; > 90° relative to the
control because this is equivalent to (ér,uJ(s)) < 0, and
leads to an ax < O that contradicts definition.

Because (50) is represented by positively scaled bases
within 90° of ug(s), all these vectors must lie on the same
side of hy, as (50). This is also true of any vector produced by a
non-negative linear combination of the components of u; (s).
Since there always exists factors € [0,00), that can scale
the elements of an action vector until they obey constraints
Umink < 0 < Umazk Yk € {1,...,m}, saturated versions of
(50) will still be capable of reducing cost for |juy(s)|| # 0. W

