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Abstract— When attempting to estimate parameters in a
dynamical system, it is often beneficial to systematically design
the experimental trajectory. This paper presents a method
of generating trajectories using an extension of a nonlinear,
infinite-dimensional, projection-based trajectory optimization
algorithm. A reformulated objective function is derived for the
algorithm to minimize the condition number of the Hessian of
the batch-least squares identification method. The batch least-
squares method is then used to estimate parameters of the
nonlinear system. A simulation example is used to demonstrate
that an arbitrarily designed trajectory can lead to an ill-
conditioned Hessian matrix in the batch-least squares method,
which in turn leads to a less precise set of identified parameters.
An example using Monte-Carlo simulations of both trajectories
shows a reduction in the variance of identified parameters for
an example cart-pendulum system.

I. INTRODUCTION

A widely used method to identify unknown or inexact
parameters in a nonlinear dynamical system is batch least-
squares parameter estimation [1]. Given a set of control
inputs, the system’s trajectory is experimentally measured,
and the measured trajectory is compared to the expected
trajectory in a least-squares sense. This comparison can be
performed using the batch least-squares method where a
set of parameters is found that minimizes the least-squares
difference between the measured trajectory and the model.
In a perfectly modeled system with zero process and mea-
surement noise, the set of estimated parameters converges
to the exact model parameters given an initial guess in the
neighborhood of the actual parameter set.

One major choice in designing an experiment to obtain
accurate estimates of the parameter values is the set of
control inputs that will drive the experimental system. A
change in the control inputs can have a significant impact on
the ability to estimate the model parameters. In the extreme
case, a trajectory could be chosen that is orthogonal to the
sensitivity of a given parameter, thus making any estimate
of that parameter impossible.

A rich and vast amount of work has been performed in the
area of experiment design, input design, and identifiability of
parameters [2-6]. Highlights of a relevant subset of this work
include work by Armstrong on optimal “exciting” trajectories
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[7] with additional methods proposed by Gautier and Khalil
[8]. These optimization methods synthesize trajectories for
systems that have nonlinear dynamics with respect to the
state but must be linear with respect to the parameters. Re-
lated work by Swevers also examines parameter estimation
trajectories for the same class of systems but in the sense of
the Fisher information matrix [9]. In both cases, the analysis
is performed on a discrete number of measurements taken of
the trajectory, and a finite discretization of the dynamics is
used with time-discretized inputs. Many other methods in the
area of experiment design also rely on discrete optimizations
which tend to discretize the continuous dynamics [10], [11].

Additional studies have been performed in areas such as
computational biology [12], [13] and aerospace [14], with
an increasing emphasis being placed on trajectory generation
using a variety of basis functions and other splines [15-18].
This method allows one to optimize over a cost, such as the
condition number, using a finite dimensional optimization
method over a fixed set of basis functions. While this allows
the trajectory to be fully continuous, instead of discretized
in time, the space of allowable control signals is still finite.

This paper contributes a new method of performing in-
put optimization with respect to the conditioning of least-
squares parameter estimation problems. Using an infinite-
dimensional, projection-based optimization method origi-
nally designed for Bolza-type optimal trajectory tracking
problems [19], the primary contribution of the paper is the
reformulation of the cost function in a manner that could
employ a non-Bolza cost function. This cost function is
directly dependent on eigenvalues of the Hessian matrix of
the parameter estimation method.

Additionally, the reformulation of the cost function re-
quires additional states to be added to the trajectory optimiza-
tion problem which are related to sensitivities of the trajec-
tory with respect to the system parameters that will be identi-
fied. By using this optimization method, the continuous-time
dynamics are not discretized; instead, variational curves on
the input and trajectory are constructed locally and projected
onto the trajectory manifold.

This paper is organized as follows: Section II covers
the least-squares parameter optimization method; Section
III presents the reformulated cost function and derives the
equations necessary to perform an optimization over the
condition number; and Section IV presents an example of
condition number optimization for a cart-pendulum system.

II. NONLINEAR LEAST-SQUARES ESTIMATION

For general, nonlinear systems, the batch least-squares
method of parameter optimization can be used [20], [21]. A



brief description of the procedure and equations is included
for completeness and with compatible notation. We begin
by defining the nonlinear system model. Given a general,
nonlinear system, the dynamics can be written as

ẋ = f(t,x(t),u(t),p) (1)

where x ∈ Rn defines the system states, u ∈ Rr represents
the control inputs, and p ∈Rh are the static parameters. For
readability, the time arguments will be dropped from x and
u, though the input and trajectory remain time-varying.

The batch least-squares optimization is performed using a
Newton-Raphson iterator. The cost function for the nonlinear
least-squares method to be minimized is given by

Jp(x,u,p) =

t f∫
t0

`p(x, x̂)dt (2)

where
`p(x, x̂) = (x− x̂)T ·Qp · (x− x̂)

and x̂ denotes the measured trajectory. The matrix Qp is an
n×n weighting matrix that can be designed according to the
relative importance of tracking particular states. Although not
covered in this paper, a proper noise analysis could influence
the weighting of Qp, which is analogous to work estimating
the covariances in continuous time filtering [22].

The minimization problem is formulated as an uncon-
strained optimization since no bounds are placed on the
values of the parameters. To use Newton’s method for
optimization, the first and second derivatives of Jp are needed
w.r.t. p.

A. First Derivative
The first derivative can be found by differentiating (2)

w.r.t. p. This results in

DpJp(x,u,p) =

t f∫
t0

Dx`p(x, x̂) ·Dpx(x,u,p)dt. (3)

To calculate Dpx, we define the trajectory, x, in its integral
form,

x = x0 +

t f∫
t0

f(x,u,p)dt.

Differentiating w.r.t. p yields

Dpx(x,u,p) =

t f∫
t0

Dxf(x,u,p) ·Dpx(x,u,p)

+Dpf(x,u,p)dt. (4)

The above equation provides the solution for the sensitivity
of Jp with respect to changes in parameters. Since the expres-
sion for Dpx contains the integral of Dpx, by differentiating
with respect to time, it can be written as an independent
differential equation, defined as

g(x,u,p) = Dpx(x,u,p)

ġ(x,u,p) = Dxf(x,u,p) ·g(x,u,p)+Dpf(x,u,p) (5)

with the initial condition at t = 0, g(x,u,p) = {0}n×h.

B. Second Derivative

The second derivative of the cost is calculated in a
similar manner. To further simplify notation, arguments of
previously defined functions will be left out and replaced by
(·). Taking the derivative of (3) results in the following:

D2
pJp(x,u,p) =

t f∫
t0

[
D2

x`p(·) ·g(·)
]T(2,1) ·g(·)

+Dx`p(·) ·D2
px(g,x,u,p)dt. (6)

The quantity, D2
px must now be calculated, which is

obtained by differentiating (4) with respect to p. We again
define this equation as follows

h(g,x,u,p) = D2
px(g,x,u,p)

ḣ(·) =
[[

D2
xf(·) ·g(·)+DpDxf(·)

]T(1,3,2) ·g(·)]T(1,3,2)

+Dxf(·) ·h(·)+DxDpf(·) ·g(·)+D2
pf(·) (7)

with the initial condition that at t = 0, h(·) = {0}n×m×m.
Notational Note: Since we are dealing with tensor cal-

culations, it will be necessary to transpose different levels
of the tensors for inner product calculations. The notation
used in this paper will be AT(i, j,k) where i, j,k denote the
new positions of the old levels. For example, AT(2,1) is the
standard transpose of a matrix. AT(3,2,1) transposes the third
and first levels of a 3-tensor. This notation will allow for
standard matrix product calculations for all of the equations
presented.

III. LEAST-SQUARES CONDITIONING

Given an initial trajectory and estimate of the parameters,
Newton’s method can be used to find an optimal set of
parameters based on the trajectory. With u and p, we can
calculate the condition number of the cost function Hessian.
Assuming that the Euclidean norm is used and the Hessian
is symmetric, the condition number is equal to

κ(D2
pJp(x,u,p)) =

∣∣∣∣λmax

λmin

∣∣∣∣ ,
where λ is the set of eigenvalues of the matrix D2

pJp(·).

A. Trajectory Optimization Problem

The next step is to optimize the system’s trajectory using
the condition number of the Hessian, D2

pJp(·), as the objec-
tive function. The theoretical framework for the optimization
routine is largely based on an infinite dimensional LQR
optimization with a nonlinear projection step. Details on the
theoretical background can be found in [19], [23].

We define a cost function that is based on the condition
number of D2

pJp(·), defined in terms of its eigenvalues. The
cost function is given by

Jτ =
1
2

(
λmax

λmin

)2

. (8)



Although the cost function appears to include only a
terminal condition involving the eigenvalues of D2

pJp(·), the
eigenvalues are actually functions of the trajectory, which
will result in a running cost. This property will allow the
non-Bolza form of the optimal control problem to be cast
into a Bolza form for the iterative LQR step described in the
next section.

The overall optimization problem can therefore be written
as

min
u

Jτ

s.t. (1),(5),(7) are satisfied.

B. Steepest Descent Calculation

The nonlinear constrained optimization is performed using
an iterative gradient descent technique. The descent direction
ζ is given by the following LQR problem,

ζ = argminDJτ(ξ )◦ζ +
1
2
〈ζ ,ζ 〉. (9)

For the method used in this paper, we will treat the sensitiv-
ity, g, and Hessian, h, equations as dynamics constraints.
Therefore, the dynamics of the system are expanded to
include g and h. We denote this expanded state as

x = {x,g,h},

and the state and control vector are given by

ξ = {x,u}.

Since the minimization involves a derivative of the cost
function, a linearization of the cost with respect to the
variation on ξ is necessary. Therefore, DJτ(ξ )◦ζ is defined
as the following

DJτ(ξ )◦ζ =

t f∫
t0

aT z dt, (10)

where a is the linearization of the cost functional in (8),
and z is the perturbation on the extended state vector. This
linearization will be derived in the following section. We
then need to define a Hamiltonian to construct the optimality
condition for the LQR problem. For the LQR problem (9),
the Hamiltonian is given by the following

H =
1
2

zT Qnz+
1
2

vT Rnv+aT z+pT (Az+Bv). (11)

A and B are the linearizations of the dynamics and will be
calculated in a later section. Qn and Rn are weight matrices
for the local LQR optimization, p is the co-state variable,
and v is the control perturbation.

C. Eigenvalue Derivatives

In order to take the derivative of the cost function, it must
be possible to take an analytic derivative of an eigenvalue.
Fortunately, eigenvalue perturbation theory permits such dif-
ferentiation, and the resulting form is relatively compact.

The derivative method we will use was derived by Nelson
[24]. Given an eigensystem of the form,

AX = XΛ

where Λ is a diagonal matrix of eigenvalues, X is a matrix
of eigenvectors, and, in this case, A = D2

pJp(·). We will take
this derivative with respect to the extended system states, x
as well as the controls, u.

The result of Nelson’s work is that the derivative of one
eigenvalue of the matrix A is given by

Diλk = yT
k ·DiA · xk, (12)

where λk is the kth eigenvalue of A, xk is the associated left
eigenvector, yk is the associated right eigenvector of A, and
DiA and Diλk are the partial derivatives of A and λk with
respect to some argument i.

Given this derivative, it is possible to calculate a closed
form of the derivative of the cost function Lagrangian as
necessary for the optimization algorithm.

D. Lagrangian Linearization

The first linearization that is required is the linearization
of the cost function Lagrangian with respect to the expanded
state, x, and the control vector, u, as shown in (10). In this
section, we detail the equations for the derivatives of the cost
function with respect to the expanded dynamics.

To begin, we use the quotient rule on the optimization
cost given in (8). Taking the first derivative results in the
following equation for a:

a =
∂Jτ

∂ x̄
=

(λmin
δλmax

δx −λmax
δλmin

δx )

λ 2
min

.

The equation for the eigenvalue derivative is now used as
defined in the previous section. Given (12), the derivative of
λi, for i ∈ {min,max}, w.r.t. x̄ is written as

δλi

δx
=

t f∫
t0

v∗T
δ

δx

(
d
dt

D2
pJp(·)

)
v∗ dt,

where v∗ is the eigenvector associated with λi.
The inside of this integral will become the Lagrangian

linearization but now includes the derivative of D2
pJp(·)

w.r.t. x̄. This new term can be solved analytically using the
constraint equations and equation for the Hessian.

The derivative of d
dt D2

pJp is computed first with respect to
each component of the expanded state. Then, the derivative
of each component can be combined into a complete vector.
First, we will solve for the derivative of the Hessian with
respect to the nominal state, x. The partial derivative of (6)
w.r.t. x is calculated. This results in a tensor given by the
following equation:

δ

δx

(
d
dt

D2
pJp(·)

)
=
[
Qp ·D2

px(·)
]T(2,3,1) = [Qp ·h(·)]T(2,3,1)

(13)



Next, we take the partial derivative w.r.t. g. This results in a
tensor given by the following

δ

δg

(
d
dt

D2
pJp(·)

)
=[Qp ·g(·)]T(2,1) ·E

+
[
(Qp ·E)T(2,3,1) ·g(·)

]T(2,3,1)
(14)

where E is a sparse tensor given by

Ei, j,k,l = δi,kδ j,l ,

where δ·,· is the Kronecker delta function.
The last partial derivative is of the Hessian with respect

to the last expanded state, h. The result is a tensor given by
the following equation

δ

δh

(
d
dt

D2
pJp(·)

)
= Qp · (x(·)− x̂) ·F (15)

where F is a sparse tensor given by the following

Fi, j,k,l,m,n = δi,lδ j,mδk,n.

We now have the Lagrangian cost function linearization
with (13), (14), and (15). The next step is to calculate the
linearization of the dynamic constraints w.r.t. x̄.

E. Dynamics Linearizations
To perform the LQR optimization, we need the lineariza-

tion of the dynamic constraints. Due to the structure of the
expanded dynamics, A simplifies to a lower triangular matrix
of the form

A =


∂ ẋ
∂x 0 0
∂ ġ
∂x

∂ ġ
∂g 0

∂ ḣ
∂x

∂ ḣ
∂g

∂ ḣ
∂h

 .
The derivatives are straightforward using (1), (5), and (7).

The first derivative of the state dynamics w.r.t. x is simply
∂ ẋ
∂x

= Dx f (·).

This derivative depends on the system dynamics and must be
calculated with respect to the dynamics. The next quantity
is the partial derivative of g w.r.t. x. This derivative is given
by

∂ ġ
∂x

=
[
D2

x f (·)T(2,3,1) ·g(·)
]T(1,3,2)

+DxDp f (x(·)).

Next, the derivative of the dynamics of g with respect to that
state yields

∂ ġ
∂g

= Dx f (·) ·E,

where E is the same tensor that is used in the Lagrangian
linearizations.

The last row of the A matrix involves the derivative of
h with respect to each element of the expanded state. The
derivative w.r.t. x is given by

∂ ḣ
∂x

=

[(
D3

x f (·)T(1,4,2,3) ·g(·)
)T(1,4,2,3) ·g(·)

]T(1,2,4,3)

+
[
DxDpDx f (·)T(1,3,4,2) ·g(·)

]T(1,2,4,3)

+
[
D2

x f (·)T(2,1,3) ·h(·)
]T(1,3,4,2)

+DxD2
p f (·).

The derivative w.r.t. g is given by

∂ ḣ
∂g

=
[(

D2
x f (·) ·E

)T(1,3,4,2) ·g(·)
]T(1,2,4,3)

+
[
D2

x f (·) ·g(·)
]T(1,3,2) ·E,

and the derivative w.r.t. h is given by

∂ ḣ
∂h

= Dx f (·) ·F.

With these equations, the A matrix can be constructed. For
both the Lagrangian and dynamics linearizations, the tensor
forms for a and A can be mapped to a single vector form.
The result is an A matrix that is n(h2+h+1)×n(h2+h+1).

Additionally, the LQR Hamiltonian from (11) requires the
linearization of the dynamics with respect to the control
inputs, u. This linearization is given by the matrix B in the
Hamiltonian. In the same way, the derivatives are calculated
with respect to the control inputs resulting in B of the form

B =

 ∂ ẋ
∂u
∂ ġ
∂u
∂ ḣ
∂u

 .
The three derivatives are as follows

∂ ẋ
∂u

= Du f (·)

∂ ġ
∂u

=
[
DuDx f (·)T(1,3,2) ·g(·)

]T(1,3,2)
+DuDp f (·)

∂ ḣ
∂u

=

[(
DuD2

x f (·)T(1,4,2,3) ·g(·)
)T(1,4,2,3) ·g(·)

]T(1,2,4,3)

+

[(
DuDpDx f (·)T(1,3,2,4)

)T(1,2,4,3) ·g(·)
]T(1,2,4,3)

+
[
DuDx f (·)T(1,3,2) ·h(·)

]T(1,3,4,2)
+DuD2

p f (·).

Again, these tensors can be mapped to a vector form of the
expanded state, resulting in a n(h2 +h+1)× r matrix which
is then multiplied by the variation of the control input, v in
the optimization calculation.

F. Optimization Routine

Given the linearization calculations, it is possible to per-
form the iterative LQR optimization with projection step. At
each iteration, the Lagrangian and dynamics linearizations
are calculated, providing a, A, and B.

Following these linearization calculations, a Riccati equa-
tion is solved as part of the LQR solution. This LQR solution
provides a control input, v, based on the linearization of the
system at a given point in time. However, this solution is
only valid at the linearization. To find a feasible control,
this perturbation is projected back onto the space of feasible
trajectories and constraints.



For the trajectory optimization, the projection operator
uses a stabilizing feedback control law to satistfy the con-
straint equations for x,g, and h. The form of the projection
operator is given by

P(x̄) :


u = µ +K(ᾱ− x̄)
ẋ = f(x,u)
ġ = Eq.(5)
ḣ = Eq.(7)

(16)

where (ᾱ,µ) is the infeasible trajectory from the steepest
descent calculation, and K is the feedback gain which can
be optimized by solving an additional LQR problem. Details
on the optimal gain selection can be found in [19].

A few design choices are available in the optimization
routine such as the ability to choose local weighting matrices
and projection weightings. In the following cart-pendulum
example, all weighting matrices are chosen as the identity
matrix.

IV. EXAMPLE

To illustrate the use of conditioning optimization, we will
optimize a simple cart-pendulum system. We will assume
that the pendulum has a single rotational degree of freedom,
and the cart provides horizontal forces on the base of the
pendulum as seen in Fig. 1. The dynamics for the system

u

θ

Fig. 1: Cart-pendulum system

are given by the following

ẋ =

[
θ̇

− u
α

cosθ −gsinθ −bθ̇

]
where u is the cart acceleration control input, b is the viscous
damping coefficient, and α is an input scaling parameter.

A. Identification Procedure

To simulate an experimentally measured trajectory, we
will generate a deterministic trajectory based on “actual”
parameters which would be inherent to the system, but not
known exactly if the trajectory was experimentally measured.
We then use additive white noise to create a stochastic
trajectory for this example. Given this uncertain trajectory,
the procedure is as follows:

1) Perform the batch least-squares optimization using an
initial guess of the parameters which yields the first
estimate of the parameters.

2) Perform the conditioning optimization using the es-
timate of the parameters which yields a new set of
control inputs for the system.

1 2 3 4
t

10

20

30

40
u

Fig. 2: Initial control input.

1 2 3 4
t

-0.20

-0.15

-0.10

-0.05

0.05

0.10

θ
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Measured Simulation

Fig. 3: System trajectories before and after parameter opti-
mization simulated measurement noise.

3) Run the experiment using the newly generated inputs
and measure the trajectory.

4) Perform a second parameter optimization using the
new trajectory to determine a new estimate of the
parameter set.

Note that the optimal trajectory generated by the con-
ditioning optimization would be obtained using the actual
model parameters; however, since in practice these parame-
ters will not be known, the best alternative is to use the initial
optimized set of parameters based on the chosen trajectory.

B. Parameter Optimization

The two parameters that will be examined are the scaling
parameter and damping coefficient. The parameters are as
follows:

Actual : α = 30.0, b = 1.0 Ns/m
Initial Guess : α = 25.1, b = 1.2 Ns/m

The initial control input is arbitrarily chosen and shown in
Fig. 2. The “measured” trajectory and optimized trajectory
are shown in Fig. 3.

As a result of the parameter estimation, the parameters
are identified as b = 0.983 Ns/m and α = 30.276 . The
convergence criterion used for the parameter optimization
was |DJp(·)| < 10−8. The condition number of the Hessian
of the estimation problem can also be calculated with these
optimized parameters. For the initial trajectory, the Hessian
is

D2
pJp =

[
0.034997 0.0022998

0.0022998 0.00019817

]
.
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(a) Cart-pendulum trajectory
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(b) Input to cart-pendulum system

Fig. 4: Example trajectories and inputs before and after
conditioning optimization.

The condition number for this matrix can then be calcu-
lated and has a value of 629.1. The objective is to minimize
the condition number as much as possible to improve the
conditioning of the parameter identification optimization.

C. Condition Number Optimization

To begin the conditioning optimization, we take the control
input, optimized parameter trajectory, and optimized set of
parameters and then calculate the linearizations of the cost
function Lagrangian and expanded state dynamics as detailed
in Section III. The iterative optimization is performed, mini-
mizing the LQR problem and projecting the perturbation into
the feasible trajectory space.

The result is a new trajectory with a condition number
of 23.8. The convergence criterion used for the condition
number optimization is |DJτ(ξ ) ◦ ζ | < 10−2. This criterion
is set lower than the parameter optimization since only a
first derivative method is used, leading to slower convergence
rates. Plots of the initial and optimized trajectory are shown
in Fig. 4. Following the conditioning optimization, the exper-
iment would be run again to measure a new trajectory. For
this simulation, we will again add noise to a deterministic
trajectory calculated with the actual parameters.

With the new trajectory, the parameters can be optimized
again. Performing the parameter optimization on this new
trajectory yields a new optimal set of parameters, b =
1.0012 Ns/m and α = 29.993 .
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(a) Distribution using initial trajectory
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80
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(b) Distribution using optimized trajectory

Fig. 5: PDF histograms of the damping coefficient, b.

D. Variance Observations

This set of parameters is an improvement over the previ-
ous estimate using the initially chosen trajectory; however,
since the trajectory is uncertain, we will perform a Monte-
Carlo based simulation to observe that the variance of the
optimized trajectory is lower than that of the ill-conditioned
trajectory. The parameter optimization routine was run 1000
times using both the initial trajectory and the optimized
trajectory. In each iteration, an additive white noise signal
is interpolated from 100 random samples with a standard
deviation of 0.01 and dt = 0.04 sec. This signal is regener-
ated for the “measured” trajectory, simulating the effect of
measurement noise, or other additive, normally distributed
noise.

A histogram of the distribution of the optimized param-
eters was computed for the position and velocity for both
trajectories. The results are shown in Figs. 5 and 6. Addition-
ally, a normal distribution curve was fit to the histogram data
based on the parameter variance. Table I shows the variance
computed for the set of 1000 estimates. As shown in the
table and figures, the variance of both parameters identified
by the optimized trajectory is reduced by approximately an
order of magnitude over the initially selected trajectory.

TABLE I: Parameter Variance

b (kg/s) α

Initial chosen trajectory 0.000419 0.0818
Optimized trajectory 0.0000219 0.00183
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Fig. 6: PDF histogram of the scaling parameter, α .

V. CONCLUSION

By designing a different trajectory for a parameter estima-
tion experiment, simulation results demonstrate a significant
decrease in the variance of the estimated parameters. In the
case of the cart-pendulum example, this decrease is an order
of magnitude for each of the two parameters. This result
highlights the ability to more precisely estimate a given set
of parameters in the experimental setup by systematically
designing the trajectory.

Depending on the experimental setup, additional factors
may also be important, such as the magnitude of control
inputs, or a trajectory that doesn’t deviate too far from a
prescribed motion. In both cases, a running cost on the
trajectory states and cost on the control input can be added
to the cost function to achieve a desired result.

A benefit of the continuous time formulation of the
conditioning optimization is that differential equation solver
packages can utilize adaptive time stepping methods through-
out the trajectory and Riccati equation solutions instead of
having to discretely sample at fixed time steps. This allows
for faster computation, while preserving small time steps in
regimes that require higher sampling to maintain accuracy.

Future goals related to the use of this algorithm include de-
riving an analytic link between the variance of the parameter
identification method and the conditioning of the Hessian to
support the Monte-Carlo analysis results. Additionally, links
to quantities such as the Fisher information matrix, used in
finite dimensional optimization methods, are sought in future
research.
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