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Abstract—When attempting to estimate parameters in a dy-
namical system, it is often beneficial to strategically design
experimental trajectories that facilitate the estimation process.
This paper presents an optimization algorithm which improves
conditioning of estimation problems by modifying the experi-
mental trajectory. An objective function which minimizes the
condition number of the Hessian of the least-squares identifi-
cation method is derived and a least-squares method is used
to estimate parameters of the nonlinear system. A software-
simulated example demonstrates that an arbitrarily designed
trajectory can lead to an ill-conditioned least-squares estimation
problem, which in turn leads to slower convergence to the best
estimate and, in the presence of experimental uncertainties, may
lead to no convergence at all. A physical experiment with a
robot-controlled suspended mass also shows improved estimation
results in practice in the presence of noise and uncertainty using
the optimized trajectory.

Note to Practitioners—This paper presents a software-
automated method to design the time-varying control input for
a dynamic system when attempting to better estimate model
parameters. This type of scenario could include an automated
system actively inspecting multi-body parts for elastic or damping
coefficients or a robot attempting to better estimate its own
inertias. The method requires known equations of motion of
a system with unknown, constant parameters. We show—both
in simulation and in experiment—that using the algorithm to
optimize the control input results in better convergence of
parameter estimates for simulated and experimental systems.

Index Terms—optimal control, parameter estimation, iterative
methods in optimization

I. INTRODUCTION

IN robotics and automation environments, it can be desirable
to have automatic controllers capable of refining estimates

of model parameters, such as the mass of an object, damping
in a mechanical system, or geometric properties. To obtain
better estimates, a model for the system is assumed and the
system’s trajectory is experimentally measured and compared
to the expected trajectory in a least-squares sense [1]. First
order gradient descent or second order Newton’s method
type optimization routines are utilized to determine values
for the system parameters which minimize the least-squares
error between the model-predicted system trajectories and the
experimental data.
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One major choice in designing the experiment to obtain
accurate estimates of the parameter values is the set of control
inputs that will drive the experimental system. A change in the
control inputs can have a significant impact on the ability to
estimate the model parameters. In an extreme case, a trajectory
could be chosen such that a zero eigenvalue exists in the least-
squares Hessian, thus making any estimate of that parameter
impossible.

A wide variety of work has been performed in the areas of
experiment design, input design, and identifiability of param-
eters [2]–[8]. Highlights of a relevant subset of this literature
include work by Armstrong on optimal “exciting” trajectories
[9] and work on minimal parameter set methods by Gautier
and Khalil [10]. These optimization methods synthesize trajec-
tories for systems that have nonlinear dynamics with respect
to the state but must be linear with respect to the parameters.
Related work by Swevers also examines parameter estimation
trajectories for the same class of systems but from the perspec-
tive of the Fisher information matrix [11]. In both cases, the
analysis is performed on a discrete number of measurements
taken from the trajectory, and a finite discretization of the
dynamics is used with time-discretized inputs. Many other
methods in the area of experiment design also rely on discrete
optimizations which discretize the continuous dynamics [12]–
[14].

Additional studies have been performed in areas such as
computational biology [15], [16] and aerospace [17], with
emphasis being placed on trajectory generation using a variety
of basis functions or splines [18]–[21]. These methods allow
one to optimize over a cost index, such as the condition
number, using a finite dimensional optimization method over
a fixed set of basis functions. While this allows the trajectory
to be expressed in the continuous time domain, the space of
allowable control signals is still finite.

A. Contribution and Related Work
This paper presents an extension and refinement of work

originally published at the IEEE Conference on Automation
Science and Engineering [22]. Using an infinite-dimensional,
projection-based optimization method originally designed for
Bolza-type trajectory tracking problems [23], the original work
presents a formulation of the (non-Bolza) cost function to
achieve conditioning optimization for parameter estimation.
The cost function includes a term dependent on eigenvalues
of the Hessian matrix of the parameter estimation problem
which directly affects convergence rates of gradient descent
based parameter optimization method.
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Additionally, the formulation of the cost function requires
additional states to be added to the trajectory optimization
problem that are related to sensitivities of the trajectory
with respect to the system parameters to be identified. In
this optimization method, continuous-time dynamics are not
discretized; rather, optimal variations of the input and trajec-
tory are constructed locally and projected onto the trajectory
manifold of feasible nonlinear executions of the dynamical
system. This paper presents a compact version of the original
algorithm which has been refined to include a dependence
only on the first-order sensitivity as opposed to the first and
second order sensitivities presented in the original work. The
algorithm has also been extended to handle nonlinear output
functions in addition to the nonlinear dynamic model. Finally,
experimental results are presented in this paper to validate the
theoretical claims of the original algorithm.

This paper is organized as follows: Section II covers
the least-squares parameter optimization method; Section III
presents the reformulated trajectory optimization method and
derives the equations necessary to perform the optimization
with respect to the condition number; and Sections IV and V
present experimental results of condition number optimization
for a cart and suspended mass system.

II. NONLINEAR LEAST-SQUARES ESTIMATION

For nonlinear dynamical systems, least-squares estimation
methods can be used to estimate system parameters [24], [25].
We begin with a brief formulation of the estimation problem
for completeness and to introduce notation. Given a nonlinear
dynamical system, the system dynamics can be written as

ẋ =f(t,x(t),u(t), θ) (1)
y =g(t,x(t),u(t), θ)

where x ∈ Rn defines the system states, u ∈ Rr represents
the control inputs, and θ ∈ Rp is a vector of static model
parameters to be estimated. The system output, y ∈ Rh
can also be a nonlinear function of the states, controls and
parameters. To simplify the notation, the time arguments will
be dropped though the input and trajectory remain time-
varying.

For this algorithm, we assume that measurements of the
system output contain noise which is normally distributed and
zero mean. The result of this assumption is that minimization
of the least-square error in the system output is equivalent to
maximum likelihood estimation of the system parameters [1].
Therefore, the least-squares cost function for the estimation
algorithm is given by

Jp =
1

2

tf∫
t0

[g(x,u, θ)− ỹ]
T ·Qθ · [g(x,u, θ)− ỹ] dt (2)

where ỹ denotes the measured output and Qθ is an h × h
positive semi-definite weighting matrix. Although not covered
in this paper, estimates of the sensor covariance are commonly
used as weights for Qθ, which is analogous to estimating the
covariances in continuous time filtering [26].

The minimization of (2) is treated as an unconstrained
optimization problem with no bounds placed on the values
of the parameters. A variety of optimization methods can be
used to find an optimizer to this problem; however, this paper
will focus on two approaches: gradient descent optimization
and the Iterated Least-Squares method defined in [1]. The two
approaches are based on the first and second derivatives of the
cost function (2) with respect to θ.

A. Gradient Descent Optimization

Gradient descent techniques are commonly used in opti-
mization problems due to their simplicity and because only the
first derivative of the objective function needs to be calculated.
The first derivative can be found by differentiating (2) with
respect to θ. This results in

DθJp(θ) =

tf∫
t0

[g(·)− ỹ]
T ·Qθ· (3)

[Dxg(x,u, θ) ·Dθx(x,u, θ) +Dθg(x,u, θ)] dt.

Note that the form DxJ represents the derivative of J with
respect to x. Since x is constrained by the system dynamics
through (1), the derivative Dθx is also constrained by a
differential equation given by

ψ̇(x,u, θ) = Dxf(x,u, θ) · ψ(x,u, θ) +Dθf(x,u, θ) (4)

where
ψ(x,u, θ) = Dθx(x,u, θ)

with the initial condition at t = 0, ψ(x,u, θ) = {0}n×p.
The estimation algorithm is applied as shown by Algorithm

1. An Armijo backtracking line-search is used at every iter-
ation to ensure that the new parameter estimate sufficiently
decreases the least-squares cost [27].

With respect to algorithm convergence, gradient descent op-
timization ensures convergence to a local minimizer; however,
the rate of convergence can be extremely slow in practice.
Given a strongly convex least-squares problem, it has been
shown in prior literature [28] that the error of the parameter
estimates follows

‖θi+1 − θ∗‖
‖θi − θ∗‖

≤
(
λn − λ1
λn + λ1

)
,

where λn and λ1 are the respective maximum and minimum
eigenvalues of the Hessian of Jp. This result indicates that as
the condition number κ = λn/λ1 increases, the convergence
rate of the gradient descent algorithm degrades.

Algorithm 1 Gradient Descent Parameter Estimation
Choose initial θ0 ∈ Rp, tolerance ε
while DθJp(θi) > ε do

di = −DθJp(θi) from (3)
Compute γi using Armijo backtracking search
θi+1 = θi + γidi
i = i+ 1

end while
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B. Iterated Least-Squares Optimization

Since gradient descent-based optimization has slower con-
vergence with increasingly ill-conditioned problems, Hessian-
based methods may be used to improve convergence rates.
The Iterated Least-Squares method uses an approximation of
the Hessian to perform a quasi-Newton type optimization [1].
For the Iterated Least Squares method, the parameter estimate
update is given by the following,

θi+1 = θi +

 tf∫
t0

`p(·)T ·Qθ · `p(·) dt

−1

·DθJp(θi) (5)

where

`p(·) = Dxg(·) · ψ(·) +Dθg(·).

For compactness, arguments of previously defined functions
have been omitted and are replaced by (·).

To show how one obtains the approximate Hessian used in
(5), the full Hessian matrix will be derived in a similar manner
to the first derivative. Taking the derivative of (3) results in
the following:

D2
pJp(x,u, θ) =

tf∫
t0

`p(·)T ·Qθ · `p(·) + [g(·)− ỹ]
T ·Qθ·[

Dxg(·) ·D2
θx(·) +D2

xg(·) · ψ(·) +D2
θg(·)

]
dt.

To calculate the exact Hessian, a second differential equa-
tion for D2

θx must be calculated; however, near the optimal
parameter set, θ̂, (g(·)− ỹ) ≈ 0. Therefore, assuming that the
estimated parameters are near the optimal set, the Hessian is
approximated as

D2
pJp(x,u, θ) =

tf∫
t0

`p(·)T ·Qθ · `p(·) dt. (6)

Although the Iterated Least-Squares algorithm improves
convergence rates near the optimal parameter set compared
to the gradient descent method, for highly ill-conditioned
problems, undesirable convergence rates may exist. Conver-
gence results for a robot and suspended mass system will be
presented in the following sections.

III. CONDITIONING OPTIMIZATION ALGORITHM

To improve the convergence rates using either gradient
descent or Iterated Least-Squares estimation methods, an
initial experimental trajectory having a Hessian with a high
condition number can be optimized to produce an experimental
trajectory with better Hessian conditioning. The theoretical
framework for the optimization routine is largely based on
an infinite dimensional LQR optimization with a nonlinear
projection step. Details on the theoretical background can be
found in [23], [29].

A. Cost Function

The cost function, which is minimized by the trajectory
optimization algorithm, directly incorporates the condition
number of the parameter estimation Hessian, a control cost,
and an optional cost on the trajectory itself. The trajectory
optimization algorithm uses the current best estimate of the
parameter set. Therefore, it is assumed that the parameter set
is close to the true value; thus the Hessian is approximated by
(6).

Using this formulation, the condition number of the Hessian
can be calculated. Assuming that the Euclidean norm is used
and the Hessian is symmetric, the condition number is equal
to

κ(D2
pJp(x,u, θ)) =

∣∣∣∣λmaxλmin

∣∣∣∣ ,
where λ is the set of eigenvalues of the matrix D2

θJp(·).
With the definition of the condition number, the cost func-

tion for the trajectory optimization problem is given by

Jτ =Qp

(
λmax
λmin

− 1

)
+

1

2

tf∫
t0

[
(x(t)− xd(t))T ·Qτ ·

(x(t)− xd(t)) +u(t)T ·Rτ · u(t)
]
dt (7)

where Qp is a scalar weight on the condition number min-
imization, Qτ is a n × n weighting matrix on the trajectory
tracking cost, and Rτ is a r×r weighing matrix on the control
inputs.

Although the cost function appears to include a terminal
condition on the eigenvalues of D2

θJp(·), since the least-
squares estimator is defined over the entire time horizon,
the eigenvalues themselves are functions of each point along
the trajectory. This property will allow the apparent non-
Bolza form of the optimal control problem to be cast into
a Bolza form for the iterative LQR step described in the next
section. This Bolza form of the problem only holds locally for
perturbations to the trajectory required for the iterative LQR
optimization.

The overall optimization problem can therefore be written
as

min
u

Jτ

s.t. (1) and (4) are satisfied.

B. Extended Dynamics Constraints

The trajectory optimization algorithm requires that the ob-
jective function be an explicit function of the system states
[30]. However, given that the Hessian defined by (6) is a
function of the differential equation given by (4), the cost also
depends on ψ(x,u, θ).

Since the objective is to minimize a norm that includes the
derivative of the states with respect to the parameters, ψ(·)
from (4) must be appended as an additional state. Appending
ψ(·) to the state vector as an additional dynamic constraint
allows for variations in ψ(·) in the optimization algorithm.
For convenience, x̄(t) = (x(t), ψ(·)) will define the extended
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states and η(t) = (x̄(t),u(t)) defines a feasible curve for the
dynamics of the extended state.

C. Optimization Routine

The optimal control problem is solved using an iterative de-
scent technique shown in Algorithm 2. Since directly solving
the constrained optimization problem is unlikely to be feasible
for general nonlinear systems, iterative steps are computed
which incrementally improve the cost until a minimizer is ob-
tained. Additionally, a projection operator P (ξi(t)) is used so
that the optimization can be reformulated as an unconstrained
problem of the form

arg min
ξi(t)

Jτ (P (ξi(t))).

This allows variations of the trajectory to be calculated free of
the constraint of maintaining feasible dynamics; however, the
solution is projected to a feasible trajectory at each iteration
of the optimization algorithm.

For each iteration of the algorithm, a descent direction
ζi(t) = (z̄,v) is computed from a time-varying linearization
operating about each point in time of the current trajectory.
The descent direction calculation can be cast as an uncon-
strained LQR problem [30] given by

ζi(t) = arg min
ζi(t)

DJτ (P (ξi(t))) ◦ ζi(t) +
1

2
〈ζi(t), ζi(t)〉 (8)

such that
˙̄z = Az̄ +Bv

where ζi(t) ∈ TηiT , i.e., the descent direction lies in the
tangent space of the trajectory manifold at the current iteration.
The components of the descent direction, ζi = (z̄(t),v(t))
are defined by z̄(t), the perturbation to the extended state and
v(t), the perturbation to the control. Matrices A and B are
linearizations of the system dynamics, which are formulated
in the following section. Since (8) is a quadratic function of ζi
with linear constraints, the descent direction can be computed
using LQR techniques described in detail in the following
section.

Using the projection operator P (ξi(t)), the unconstrained,
or infeasible solution ξi(t) is projected onto the dynamics
constraints at each iteration as detailed in [23]. The projection
operator is a stabilizing feedback law used to map an infeasible
or feasible trajectory, defined by ξ(t) = (ᾱ(t), µ(t)) to a
dynamically feasible trajectory, η(t) = (x̄(t),u(t)).

The projection operator used in this paper is given by

P (ξ(t)) :


u(t) = µ(t) +K(t)(ᾱ(t)− x̄(t))
ẋ(t) = f(x(t),u(t))

ψ̇(t) = Dxf(x,u, θ)Tψ(t) +Dθf(x,u, θ)T

where the domain of the operator is an unconstrained trajec-
tory, ξ(t) = (ᾱ(t), µ(t)) computed from the iterative step
ξi(t) = ηi(t) + γiζi, and the output is a feasible trajectory,
η(t) = (x̄(t),u(t)). The feedback gain K(t) can be optimized
as well by solving an additional linear quadratic regulation
problem. Details of the optimal gain problem can be found in
[23], but any feedback synthesis technique may be used.

Algorithm 2 Trajectory Optimization
Initialize η0 ∈ T , tolerance ε
while DJτ (ηi(t)) ◦ ζi > ε do

Calculate descent, ζi:
ζi = arg minζi(t)DJτ (P (ξi(t))) ◦ ζi + 1

2 〈ζi, ζi〉
Compute γi with Armijo backtracking search
Calculate infeasible trajectory:
ξi(t) = ηi(t) + γiζi

Project trajectory onto dynamics constraints:
ηi+1(t) = P (ξi(t))

i = i+ 1
end while

Given the descent direction, ζi, a backtracking line-search of
the projection, P (ηi(t) + γiζi) provides a feasible trajectory
solution assuming that the step size γi satisfies the Armijo
sufficient decrease condition. This new feasible trajectory then
becomes the trajectory for the next iteration of the optimal
control algorithm.

D. Descent Direction Calculation

At each iteration of the conditioning optimization algorithm,
the LQR problem given by (8) must be solved. The descent
direction depends on the linearization of the cost function,
DJ(P (ξi(t))) and the local quadratic model, 1

2 〈ζi(t), ζi(t)〉.
By rewriting the linearization in terms of extended states and
controls and evaluating the local quadratic model using a
weighed norm on the states and controls, the equation for the
descent direction (8) becomes

arg min
ζi(t)

=

tf∫
t0

a(t)T z̄(t) + b(t)Tv(t) +
1

2
z̄(t)TQnz̄(t)

+
1

2
v(t)

T
Rnv(t) dt, (9)

such that

˙̄z = Az̄ +Bv

where a(t) and b(t) are the linearizations of the cost function
with respect to x̄ and u, A and B are the linearizations of the
extended states, and Qn and Rn are weighting matrices for the
local quadratic model approximation. Design of these weight-
ing matrices can lead to faster convergence of the optimal
control algorithm depending on the specific problem. In the
following subsections, the formulations of the linearizations
will be presented.

1) Cost Function Linearization: The first term of (9) is
computed as the linearization of the cost function with respect
to the extended states, x̄(t) and the controls, u(t). To begin,
we apply the quotient rule to the cost function given in (7).
Taking the first derivative results in the following equation for
a(t):
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a(t) =
∂Jτ
∂x̄

=Qp

(
1

λmin

δλmax
δx

− λmax
λ2min

δλmin
δx

)

+

tf∫
t0

[
(x(t)− xd(t))

T ·Qτ
]
dt. (10)

It is clear from this result that the derivative of the eigen-
values, δλmax

δx is needed. Fortunately, eigenvalue perturbation
theory permits such differentiation, and the resulting form is
relatively compact. From [31], the derivative of one eigenvalue
of some matrix A is given by

Diλk = yTk ·DiA · xk, (11)

where λk is the kth eigenvalue of A, xk is the associated left
eigenvector, yk is the associated right eigenvector of A, and
DiA and Diλk are the partial derivatives of A and λk with
respect to some argument i.

Given (11), the derivative of λi, for i ∈ {min,max}, with
respect to x̄ is written as

δλi
δx

=

tf∫
t0

w∗T δ

δx

[
`p(·)T ·Qp · `p(·)

]
w∗ dt, (12)

where w∗ is the eigenvector associated with λi.
Lastly, differentiating the terms of the Hessian yields,

∂

∂x̄

(
`p(·)T ·Qp · `p(·)

)
=[

2 `Tp ·Qp ·
(
D2
xg(·) · ψ(·) +DxDθg(·)

)
2 `Tp ·Qp ·Dxg(·) · E

]
(13)

where E is a tensor of the form

Ei,j,k,l = δi,kδj,l

with δ·,· as the Kronecker delta function.
Combining equations (10), (12), (13), results in the complete

linearization a(t) in (9). The linearization with respect to the
controls u(t) is simply given by

b(t) = u(t)T ·Rτ .

2) Dynamics Linearization: The two other quantities
needed to compute the descent direction are A(t) and B(t)
– the linearizations of the dynamics. The descent direction,
ζi, will satisfy the linear constraint ODE given by

˙̄zi(t) = A(t)z̄i(t) +B(t)vi(t),

where A(t) is the linearization of the nonlinear dynamics given
by (1) and (4) with respect to x̄(t), and B(t) is the linearization
with respect to u(t). The linearization A(t), of the dynamics
with respect to the extended state x̄(t), is given by

A(t) =

[
∂ẋ
∂x

∂ẋ
∂ψ

∂ψ̇
∂x

∂ψ̇
∂ψ

]

=

[
Dxf(·) {0}n×n×p

D2
xf(·) · ψ(t) +DxDθf(·) Dxf(·) · E

]
.

Additionally, the linearization of the dynamics with respect
to the control input u(t), is required. This linearization matrix
B(t), is given by

B(t) =

[
∂ẋ
∂u
∂ψ̇
∂u

]

=

[
Duf(·)

DuDxf(·) · ψ(t) +DuDθf(·)

]
.

We now have all the data that (9) requires to compute a
descent direction ζi(t). Since this descent direction is based
on the linearized dynamics, the projection operator must be
applied to ηi(t) + γiζi to ensure the dynamics constraints are
satisfied. This process is iteratively repeated until convergence
is achieved as shown in Algorithm 2.

IV. EXPERIMENTAL SETUP

To illustrate the use of conditioning optimization on a non-
linear, dynamic system, a simulation and experimental test of a
two dimensional robot and suspended mass system is analyzed.
The system has two configuration variables, q = (x(t), φ(t)),
where x is the horizontal displacement of the cart and φ is the
rotational angle of the link as seen in Fig. 1. For this example,
the robot’s horizontal acceleration will be directly controlled,
therefore, u(t) = ẍ(t). A load cell provides the magnitude of
string tension force as the sole output of the system.

x

u

φ

Fs

Fig. 1. Diagram of the robot and suspended mass system.

A. System Model

The equations of motion for the system are given by the
following

ẋ =


ẋ
u

φ̇
u
` cosφ− g

` sinφ


where u is the cart acceleration control input, m is the mass
suspended from the robot, and ` is the length of the string.
Additionally, the equation for the force output Fs is

y = Fs = mg cosφ−m`φ̇2 − u sinφ. (14)

It is assumed that the trajectories will maintain tension in the
string; therefore, a fixed distance between the robot and mass
can be assumed.
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The goal of the experiment is to estimate the value of the
mass attached to the string and the length of the string, θ =
{m, `}. The choice of force as the system output highlights the
effect of the trajectory on the conditioning of the estimation
problem. Static or nearly static trajectories, such as the initial
trajectory shown in Fig. 3a, provide valid estimates of the
mass value; however, the string length cannot be resolved.
On the other hand, dynamic trajectories provide fluctuating
force measurements which can be used in conjunction with
the predicted model to simultaneously estimate the length and
mass values.

B. Experimental Testbed Setup

The experimental setup shown in Fig. 2 consists of a
differential drive mobile robot with magnetic wheels moving
in a plane. The robot’s driving surface is provided by a
smooth steel plate mounted above and parallel to the ground.
Two 24V DC motors drive the robot’s magnetic wheels.
PID loops running at 1500 Hz close the loop around motor
velocity using optical encoders for feedback. Two 12V lithium
iron phosphate batteries provide the required power. Desired
velocity commands are sent to the robot wirelessly using
Digi XBee R© modules at 50 Hz, and a 32-bit Microchip
PIC microprocessor handles all on-board processing, motor
control, and communication.

The motors are powerful relative to the inertias of the
robot, the suspended mass, and the wheels. Thus they are
capable of accurately tracking aggressive trajectories up to a
maximum rotational velocity. Since the input to the system
is the direct acceleration of the cart, PID loops on the motor
velocity allow the robot to accurately track a given velocity
profile. A load cell is attached to the robot and the mass is
suspended from its measurement point to enable collection
of force data using an instrumentation amplifier and 10-bit,
on-board ADC. The load cell output has been fit to a linear
model using six known masses ranging from 0.05kg to 0.30kg.
The Robot Operating System (ROS) is used for interpreting
and transmitting desired trajectories and for collecting and
processing all of the experimental data [32].

C. Identification Procedure

The procedure for completing the optimizations and taking
measurement data from the experimental system is performed
in the following order.

1) Perform the conditioning optimization using the current
best estimate of the parameters which yields a new set
of control inputs for the system.

2) Run the experiment using the newly generated inputs
and take measurement of the output along the trajectory.

3) Perform the least-squares parameter optimization using
the optimized trajectory to determine a new estimate of
the parameter set.

V. RESULTS

A. Overview

The following section presents the results of the optimiza-
tion study in both simulation and experimental trials. Given

Magnetic
wheels

Load cell

Robot cart

String, length ℓ

Mass, m

Fig. 2. Image showing the robot and suspended mass experimental system
with a diagram of main components.

an initial trajectory and set of unknown model parameters,
the conditioning algorithm is used to synthesize an optimized
trajectory. The key results are as follows:

• The condition number of the parameter optimization Hes-
sian decreases from 1.73×108 using measurements from
the initial trajectory to 19.3 using optimized trajectory
measurements.

• In simulation, 27 gradient descent steps are needed to
converge to the actual parameter values using optimized
trajectory measurements compared to over 1000 using the
initial trajectory.

• Using the experimental system, the error in predicted
string length decreases to 2.4% using optimized trajec-
tory measurements compared to 122.% using the initial
trajectory data.

Detailed results and analysis of the data is provided in the
sections that follow.

B. Optimization Results

The two parameters that will be estimated are suspended
mass value and the string length. An initial, and intentionally
incorrect, estimate of the parameters was chosen for both
the gradient descent and the Iterated Least-Squares estimation
algorithms. The actual values of the parameters were inde-
pendently measured to provide a benchmark for algorithm
verification. These values are as follows,

Initial estimate : m = 0.10 kg, ` = 0.60 m

Actual values : m = 0.12 kg, ` = 0.50 m

A minimal control trajectory is chosen as the initialization
for the conditioning optimization algorithm as shown in Fig.
3. Using the initial estimate of the parameter set and initial tra-
jectory, the optimization algorithm was run until a convergence
criterion of (J(ηi+1(t))− J(ηi(t))) < 10−1 was satisfied.
The comparison of initial and optimized trajectories can be
seen in Fig. 3.
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(b) Angle of suspended mass with respect to the robot, φ(t)

Fig. 3. Plots showing the robot (a) and suspended mass (b) trajectory before
and after conditioning optimization.

TABLE I
OPTIMIZATION RESULTS

Initial Optimal
First Eigenvalue, λ1: 3.18× 106 3.63× 106

Second Eigenvalue, λ2: 1.84× 10−2 1.88× 105

Condition Number, κ: 1.73× 108 1.93× 101

Optimization Cost, Jτ : 8.63× 104 1.02× 102

TABLE II
NUMBER OF ITERATIONS TO CONVERGE TO |Jp| < 10−6

Initial Optimal
Gradient Descent: > 1000∗ 27
ILS: 5 3
*Estimation was stopped after 1000 iterations with no
significant improvement in Jp

The eigenvalues of D2
pJp, the condition number κ, and the

cost Jτ for the initial trajectories and the optimized trajectories
are listed in Table I. The results show that the condition
number, κ, decreases drastically from 1.73 × 108 to 19.3.
Thus a significant improvement in the convergence rate of
the parameter estimation algorithms, especially the gradient
descent method, can be expected.

The plots of the optimized trajectory show that the os-
cillation of the suspended mass improved the simultaneous
estimation conditioning involving the suspended mass and
length parameters. While the load cell can correctly estimate
the mass given a static or near static system, the length can
only be estimated given a dynamic motion.

In simulation, the gradient descent and Iterated Least-
Squares parameter estimation algorithms were executed using
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(a) Contour plot showing convergence in simulation using
the initial trajectory.
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(b) Contour plot showing convergence in simulation using
the optimized trajectory.

Fig. 4. Contour plots showing the parameter estimation cost Jp across
the parametric space with the convergence path shown by the colored dots.
The red dot indicates the initial parameter estimate, the yellow dots show
intermediate iteration points, and the green dot indicates the converged point.

the initial and optimal trajectories. The convergence results
appear in Table II. As the results indicate, second-order infor-
mation in the Iterated Least-Squares method greatly improves
convergence over the gradient descent method, even for the
initial, ill-conditioned problem. The benefits of conditioning
optimization are evident in the significantly improved conver-
gence of the gradient descent algorithm. The optimal trajectory
does provide a convergence improvement for the Iterated
Least-Squares method; however, it is less significant.

The convergence path of the Iterated Least-Squares algo-
rithm is shown on contour plots of the parametric space
in Fig. 4. In the initial trajectory, the lack of information
about the length parameter leads to the ill-conditioning of the
problem. The algorithm quickly converges to the correct mass
yet takes many extra steps to converge to both parameters.
After optimization, the optimal trajectory yields improved
conditioning of the cost basin which allows the algorithm to
more directly converge on both parameters simultaneously.
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(a) Model and data from the initial experimental trajectory.
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(b) Model and data from the optimized experimental trajectory.

Fig. 5. Plots showing measured force data collected from the experimental
trial and predicted force data using both initial and optimized parameter
values.

In simulations with no measurement or model uncertainty,
the optimal trajectory only provides slight improvement in the
Iterated Least-Squares convergence rate; however, in practice,
use on experimental systems introduces measurement noise
and model uncertainty which greatly impacts the estimates
using the two trajectories. The following section provides
experimental results illustrating this point.

C. Experimental Results

Using the same initial and optimized control inputs shown
in Fig. 3, each trajectory was run on the experimental platform
described in Sec. IV-B. During each trial, force data was
collected at 300Hz and interpolated to provide continuous data
for the estimation algorithm. Following the data collection, the
Iterated Least-Squares algorithm was run on each set of data
to attempt to find a best estimate of the parameter set using
the measured output.

The results of the experiment are shown in Fig. 5 and Table
III. The impact of an ill-conditioned problem is accentuated
in the experimental results. While both trajectories provide
estimates that are within 2.4% of the mass value, the length
parameter estimate from the initial trajectory has a 122% error
compared to only 2.0% with the optimized trajectory.

Fig. 5 shows the predicted force output using the initial
parameter estimate with the blue dotted line before running the
Iterated Least-Squares estimation algorithm. After running the
estimation algorithm on both trajectories, the model predicted

TABLE III
EXPERIMENTAL RESULTS

m (kg) ` (m)
Initial Estimate: 0.100 0.60
Measured Baseline Value: 0.124 0.50

Estimate from Initial Trajectory: 0.121 1.11
% Error from Baseline Value: 2.4 122.

Optimal Trajectory Estimate: 0.121 0.51
% Error from Baseline Value: 2.4 2.0

force output for the optimized parameters is shown by the red
dashed line. The force data collected by the load cell on the
robot platform is shown by the solid black line.

Examining this data, the initial trajectory results in small
angle displacements of the mass. Since the displacement is
small compared to the noise, the model is fit mostly to noise,
providing an inaccurate estimate of the length as seen in Table
III. As the mass is purely a function of the mean of the
signal, the signal from both trajectories is sufficient to provide
a close estimate of the suspended mass. Synthesizing a new
trajectory with better conditioning results in oscillations of the
mass, which provide greater sensitivity in the measurement
output with respect to the length parameter, resulting in better
estimate convergence.

VI. CONCLUSION

It is important to consider the design of the trajectory when
attempting to estimate model parameters in a nonlinear dy-
namic system. Using optimization as a means of synthesizing
these trajectories results in better conditioning of least-squares
parameter estimation, as shown in the experimental results. In
the case of gradient descent approaches, orders of magnitude
reduction in the number of iterations can be achieved by
conditioning the Hessian of the estimation problem. While
second-order techniques show modest improvement in theory,
in practice, measurement noise and unbiased uncertainties
highlight the improvement in the estimate convergence.

Using the condition number cost balanced with appropriate
weights of control effort and tracking error results in an
improved trajectory while allowing users to assign importance
to each component. Different scenarios will require varying
levels of constraint on control effort and tracking error while
attempting to estimate system parameters.

While least-squares based estimation methods are relatively
robust to unbiased noise such as Gaussian measurement noise,
sources of biased error such as unmodeled dynamics may be
problematic for arbitrarily chosen experimental trajectories.
Future work into creating more robust algorithms may allow
for an expanded class of noise and error to be included in the-
oretical error and convergence bounds. Additionally, there is
great potential for further approximations and dimensionality
reduction of the extended state dynamics, ψ, which may allow
for faster and more efficient synthesis of the experimental
trajectory.
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