
Environmental Estimation With Distributed Finite Element Agents

Matthew L. Elwin Randy A. Freeman Kevin M. Lynch

Abstract— We develop an environmental estimation method
that allows large groups of agents to infer the value of
an environmental field using measurements. Agents maintain
estimates for subregions of the domain and communicate with
local neighbors, so the method’s communication and memory
requirements do not increase with the number of agents, the size
of the environment representation, or the agents’ density in the
environment. Despite the distributed representation, the union
of individual estimates matches an estimate generated by a
central computer with access to all measurements employing the
variational inverse method, a finite element-based interpolation
procedure. We also introduce a distributed query system,
allowing users to determine an estimate anywhere in the domain
without accessing all measurements or the full environment
representation.

I. INTRODUCTION

A common problem in sciences such as oceanography,
earth science, and atmospheric science is to infer the value
of a scalar field (e.g., temperature, chemical concentration,
radiation intensity) anywhere in an environment based on
irregularly spaced measurements. Typically, the relatively
sparse data are processed by a central computer; such meth-
ods have been studied extensively (see e.g., [1]). The advent
of cheap sensors, however, presents an opportunity to collect
more data than ever before. As the number of sensors used
to measure an environment increases, so do computation and
communication burdens. These problems become especially
acute in remote environments such as the ocean, the polar
icecaps, outer space, and underground. In such environments,
communication with a distant base station may be signifi-
cantly harder than communication between agents, making
it impractical to send all measurements to a central computer.

To address the problem of handling many measurements
with limited memory and bandwidth, we develop a dis-
tributed version of the variational inverse method (VIM) for
data interpolation [2]–[6]. This technique, used in oceanog-
raphy, generates an estimate by minimizing a cost functional
using the Finite Element Method (FEM) [7]. Rather than
having a central computer collect data from sensors, we
deploy the sensors on agents that communicate with each
other and perform computations. Each agent determines an
estimate for a small portion of the environment. No single
agent, therefore, stores a full environmental representation

This work is supported by the Office of Naval Research, Grant
N00014-13-1-0331. The authors are with the Department of Mechanical
Engineering (Elwin and Lynch), the Northwestern Institute on Complex
Systems (Freeman and Lynch), and the Department of Electrical Engineering
and Computer Science (Freeman), Northwestern University, Evanston,
IL 60208 USA. Emails: elwin@u.northwestern.edu,
freeman@eecs.northwestern.edu,
kmlynch@northwestern.edu.

or all of the measurements. By communicating with local
neighbors, however, the collection of all agents’ estimates
matches the result obtained by a central computer using VIM.

We use the alternating direction method of multipliers
(ADMM) to distribute computations and solve the FEM
problem [8]. Other methods, which generally require more
communication than ADMM include [9] and [10].

We couple our distributed VIM (DVIM) method with a
query system, allowing a user to determine the value of
the field anywhere. The user can obtain a low-resolution
view of the overall field and then focus on higher resolution
estimates in areas of particular interest. Using this system,
the full set of measurements and a complete environment
representation are never communicated to or stored by a
single computer. When communication with a remote base
station (e.g., via satellite) costs significantly more than inter-
agent communication (e.g., via XBee), minimizing such
communication becomes especially important.

In Section II we compare DVIM to existing methods in
the literature. In Section III we formulate the problem, intro-
ducing VIM and FEM. Section IV describes our distributed
solution, DVIM, and the query system. Section V provides
simulation results. We outline our conclusions and future
work in Section VI.

II. METHOD COMPARISON

We compare DVIM to existing techniques whose com-
putation, communication, and memory requirements do not
increase with respect to the number of agents. Many criteria
can be used to evaluate methods, but in this work we
are particularly concerned with three desirable properties:
scalability with respect to the environment representation,
scalability with respect to agent density, and incorporation
of all relevant measurements.

Scalability with respect to the environment representa-
tion means that every agent’s memory and communication
requirements do not increase with the resolution of the
environment model. Methods that scale with the environment
representation allow adding more agents with fixed capabil-
ities to obtain higher resolution estimates.

Scalability with respect to agent density means that every
agent’s memory and communication requirements do not
increase as the density of the agents in the environment (and
therefore measurement density) increases. High measurement
density contributes to more accurate estimates, so methods
with this property provide opportunities for improved accu-
racy by adding more agents with fixed capabilities.

Methods that incorporate all relevant measurements gen-
erate an estimate at a given point using measurements from

VIM KF [12] KK [13] NP [14] NN [11] ID [11] FE [15]
SER X X X X
SAD X X X X X
IRM X X X X X X

TABLE I
COMPARISON OF THE VARIOUS METHODS. SER - SCALE WITH

ENVIRONMENT REPRESENTATION, SAD - SCALE WITH AGENT DENSITY,
IRM - INCORPORATE RELEVANT MEASUREMENTS.

locations correlated with that point. Many methods assume
that the correlation between points decreases with distance,
and that points further than a characteristic correlation length
apart are uncorrelated. Although VIM (and therefore DVIM)
does not rely on this assumption (an advantage; it can handle
cases when nearby points should be uncorrelated, see [3]), it
incorporates all measurements when forming estimates and
does have a notion of spatial correlation [4]. Methods that
disregard measurements that should influence an estimate at
a given point do not use information efficiently.

Two features of all the methods we examine that DVIM
currently lacks are control laws for mobile agents and error
estimation abilities (we leave these for future work). To
ensure a fair comparison, we assume, for all papers, station-
ary agents and known error fields for all agents. Although
estimating an error field provides benefits, it also imposes
additional communication and memory requirements on the
agents. Additionally, in [11], movement increases communi-
cation and memory requirements because the environmental
representation is coupled to the agents’ trajectories.

We now describe several methods and evaluate whether
they scale with the environment representation, scale with
agent density, and incorporate all relevant measurements.
Table I shows this comparison, with more details provided
below. Note that a central computer collecting measurements
from all agents and applying VIM does not scale with the
environment representation or with agent density.

A. Distributed Kalman Filter [12]

This method uses a distributed Kalman filter based on
average consensus estimators to incorporate measurements
and estimate basis function coefficients that represent the en-
vironment. The method could also work using the distributed
data fusion techniques of [16]. Communication and memory
is proportional to the number of basis functions, which is
fixed beforehand; therefore, this method does not scale with
the environment representation. Every agent, however, has
a full environment estimate. This method scales with agent
density because it works over any connected communication
graph. The relationship between measurements at different
points is incorporated in the basis function choice, so mea-
surements contribute to the field estimate everywhere.

B. Kriged Kalman Filter [13]

This method represents the environment as the mean
and covariance functions of a spatial Gaussian process.
The representation consists of basis function coefficients (as
in [12]) and as a combination of measurements within a
given radius R of each agent. If the coefficients are unknown,

communication and memory is proportional to the number
of basis functions; however, by assuming known coefficients,
communication is independent of the global environment
description and this method can scale with the environment
representation. Regardless, the communication increases with
density: estimation requires the agents to incorporate all
measurements within a radius of R. Since the agents account
for measurements within a radius of R and points further
than R apart are assumed to be uncorrelated, all relevant
measurements contribute to the estimate.

C. Non-parametric Information [14]

This method represents the environment as a weighted set
of discrete samples from a probability distribution. Accord-
ingly, it can approximate any type of environment, not just
scalar fields. Every agent, however, has a complete envi-
ronment representation and must communicate information
proportional to the size of this representation. This method,
therefore, does not scale with the representation size. It does,
however, scale with agent density because it works over
connected graphs. Information is fused using a particle-filter
like approach, so the estimate at a given location incorporates
relevant measurements.

D. Local Interpolation: Nearest Neighbor [11]

In this method, the environment is a piecewise constant
function. When used with stationary agents, an agent’s
estimate over its Voronoi region is its measurement. This
method, therefore, scales with the environment representation
(adding more agents adds more Voronoi cells) and with
density. The nearest neighbor approach, however, uses a
single measurement to estimate the field over each Voronoi
cell, so it does not use all relevant measurements. With
mobile agents, as originally intended, the initial Voronoi
cells are subdivided based on current and past measurements,
creating a more detailed estimate. The environment represen-
tation, however, is coupled to the agent’s trajectories; lossy
compression is used to maintain scalability with respect to
the number of measurements when the agents move.

E. Local Interpolation: Inverse Distance [11]

Closely related to Nearest Neighbor Local Interpolation,
this method uses piecewise continuous functions to represent
the environment. Here, measurements have a diminishing
effect on the estimate as distance from the measurement de-
creases. Thus, unlike the Nearest Neighbor version, estimates
at a given point incorporate relevant measurements. However,
now the estimate must incorporate all measurements from
within a given radius R, so the method no longer scales
with agent density.

F. Distributed Finite Element Kalman Filter [15], [17]

In this method, the environment is modeled as a partial
differential equation (PDE) in space and time. Using finite
elements over the spatial variables and discretizing over time,
the PDE is converted into a discrete time state-space system
and a Kalman Filter used to estimate the state. Each agent is

responsible for only a subset of the domain; thus the method
scales with respect to the environmental model. At each
time-step, the state is estimated using the parallel Schwarz
method and measurements are incorporated using a Kalman
filter update. The method requires only information shared
by adjacent regions to be exchanged and converges to a
centralized solution; therefore the method scales with agent
density and incorporates all relevant information.

G. Distributed Variational Inverse Method

This method, as developed here, is scalable with respect
to environment representation, agent density, and incorpo-
rates relevant measurements when forming an estimate. The
environment representation is the total number of nodes in
a global FEM mesh, but each agent handles only a subset
of those nodes. As the density of the agents increases,
communication costs do not increase because communication
is proportional to the number of Voronoi neighbors and
the perimeter of every agent’s Voronoi region, which do
not increase with density. Finally, in each agents’ region,
the estimate matches the centralized VIM method, which
incorporates all measurements into the estimate.

Unlike [15], [17], our method does not require a model
of the field; thus it is applicable in situations when partial
differential equations for the environment are not known.
Additionally, we present a method to form consistent finite
element meshes in a distributed manner and a query system
to extract the estimate, issues that are not addressed in [15],
[17].

III. VARIATIONAL INVERSE METHOD

A. Sensor and Environment Model

The environment is a scalar field φ̄(x, y) over a region
Ω ⊂ R2. Stationary agents dispersed over Ω, with agent i
located at (xi, yi) ∈ Ω, inaccurately measure the field:

zi = φ̄(xi, yi) + vi, (1)

where zi is agent i’s measurement and vi is an error (e.g.
Gaussian noise) that depends on the particular agent. There
are n measurements, which we use to generate an estimate
φ(x, y) of the field φ̄(x, y) everywhere in Ω.

B. Variational Inverse Method

We use the Variational Inverse Method (VIM), an interpo-
lation method closely related to spline interpolation to esti-
mate the environment [2]–[6]. Overall, the method generates
an estimate φ(x, y) of the field φ̄(x, y) by minimizing a cost
functional using the Finite Element Method (FEM) [7].

C. Variational Principle

The cost functional to minimize is

J [φ] =

∫
Ω

S[φ]dΩ +D[φ] (2)

where φ(x, y) is the field estimate, S[φ] penalizes non-
smoothness of the estimate and D[φ] penalizes the deviation

x

x

Fig. 1. Finite element mesh with seven quadratic elements. Measurements
are denoted with x. The dots represent the nodes.

of the estimate from measurements. In this paper we use

S[φ] =

(
∂2φ

∂x2

)2

+

(
∂2φ

∂y2

)2

+ 2

(
∂2φ

∂x∂y

)2

+ α1

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2
)

+ α0(φ− φ0)2 (3)

and

D[φ] =

n∑
k=1

µk (φ(xk, yk)− zk)
2 (4)

where φ0(x, y) is a known background field, α1 is a weight
on the curvature, α0 weights the error of the field, and µk

weights each measurement.
The known background field φ0(x, y) is the assumed value

of the field in the absence of measurements; it allows us
to incorporate prior assumptions about the field into the
estimate. Alternatively, φ0(x, y) can be taken to be the
average of the data, a linear fit to the data, or zero. When
φ0(x, y) = 0 it makes sense to let α0 = 0 to avoid penalizing
the magnitude of the resulting estimated field.

D. Finite Element Method
We use FEM to minimize the cost functional (2); details

can be found in [7]. FEM consists of the following five steps:
1) Divide the domain into sub-domains called elements.
2) Find interpolating equations for each element based on

values at points within each element, called nodes.
3) Assemble elements into a global system of equations.
4) Solve the equations.
5) Post-process the result to obtain information from the

solution, for example, producing a visualization.
1) Dividing the domain: The domain is partitioned into

a mesh of m non-overlapping sub-domains called elements
(see Figure 2). Each element’s domain is Ωe and the elements
approximately cover Ω. Elements only intersect at vertices
or along full edges. Many element geometries are available.
For simplicity, we use a mesh of triangular elements, as gen-
erated by the Computational Geometry Algorithms Library
(CGAL) [18].

2) Interpolating equations: The estimate within each ele-
ment, φe(x, y), is approximated by a polynomial containing
all terms up to order d, which can be fully described by r
coefficients. This polynomial’s coefficients are related to the
value of φe(x, y) at points within the element called nodes:

φe(x, y) = wT (x, y)qe, (5)

where w(x, y) is the vector of r shape functions and qe ∈
Rr is the vector of nodal values. Many shape functions
are available. We use quadratic polynomials over triangular
domains, so r = 2 (see Figure 2). The polynomial is
b0 +b1x+b2y+b3x

2 +b4xy+b5y
2, where bi is a coefficient.

There are six coefficients and therefore six nodes (one at each
corner and one bisecting each edge).

Each shape function (an element of w(x, y)) corresponds
to a node: it is one at that node and zero at all other nodes.
For example, with r = 2, evaluating wT (x, y) at element e’s
second node yields

[
0 1 0 0 0 0

]
, which selects the

second element of qe in equation (5).
3) Assembly: Each nodal vector qe is local to element e;

however, nodes on adjacent element edges overlap. Gener-
ally, therefore, there are p < rm nodes in the finite element
mesh. The global node vector q ∈ Rp is related to the
local node vectors by the Boolean stochastic gather matrices
Le ∈ Rr×p such that:

qe = Leq. (6)

By defining φe(x, y) = 0 when (x, y) 6∈ Ωe, an approxi-
mation of the whole field is

φ(x, y) ≈
m∑
i=1

φe(x, y). (7)

Note that by using the Dirac delta δ, all terms of the cost
functional (2) can be written inside the integral as

J [φ] =

∫
Ω

(S[φ] +D′[φ]) dΩ, (8)

where

D′[φ] =

n∑
k=1

µk(φ− zk)
2
δ(x− xk)δ(y − yk). (9)

Substituting equation (7) into the cost functional (9) and
performing some manipulations yields

J [φ] ≈
m∑
e=1

(qTe Keqe − 2qTe ge) +

n∑
k=1

µk(zk − φ0(xk, yk))2,

(10)
with

Ke =

∫
Ωe

[(
∂2w

∂x2

)(
∂2w

∂x2

)T

+

(
∂2w

∂y2

)(
∂2w

∂y2

)T

+ 2

(
∂2w

∂x∂y

)(
∂2w

∂x∂y

)T

+ α1

(
∂w

∂x

)(
∂w

∂x

)T

+ α1

(
∂w

∂y

)(
∂w

∂y

)T

+ α0ww
T

]
dΩe

+
∑

(xk,yk)∈Ωe

µkw(xk, yk)wT (xk, yk) (11)

and
ge =

∑
(xk,yk)∈Ωe

µkw(xk, yk)zk. (12)

Substituting equation (6) into equation (10) and minimiz-
ing with respect to q yields the global FEM equation

Kq = g, (13)

where

K =

m∑
e=1

LT
e KeLe (14)

and

g =

m∑
e=1

LT
e ge. (15)

4) Solving: Solving equation (13) for q provides the field
estimate. For brevity we have omitted boundary conditions;
implicitly assuming that derivatives of the estimate across the
boundary are zero. However, our technique extends to cases
when either the derivatives on the boundary or the value of
some boundary nodes are specified.

5) Post-processing: Given the global node vector q, the
field can be estimated at any location using equations (7)
and (6), allowing us to, for example, plot the estimate.

IV. DISTRIBUTED METHOD

Our method, distributed VIM (DVIM), enables agents to
estimate fields using local communication without any agent
needing all measurements or a full environment representa-
tion. The scaling properties of the algorithm, derived from its
distributed nature, allow for more detailed environment rep-
resentations as the group size increases without a concomi-
tant increase in the memory or communication requirements
of individuals. Memory and communication requirements
also do not increase with increasing agent density. Individual
agents’ estimates are consistent with VIM solved on a central
computer with full access to all measurements.

To retrieve estimates from the group requires a query
system. When at least one agent can communicate with a
base station, users can query field estimates at any location.
Users may request estimates over a low-resolution grid and
then focus on specific areas, allowing for less communication
between the group and the base station.

Agents must perform the following four tasks:
1) Determine a region of dominance (ROD), the area over

which they generate estimates. In this paper an agent’s
ROD is the agent’s the Voronoi region.

2) Form a mesh within their (ROD) such that the union of
all agents’ RODs forms a valid FEM mesh. We modify
an existing meshing algorithm for this step.

3) Solve the FEM problem. We use the alternating direc-
tion method of multipliers (ADMM) algorithm.

4) Respond to requests directed at determining the es-
timate somewhere within the domain. We develop a
direction-based depth first search query system.

These tasks can be repeated indefinitely to provide estimates
of time varying fields.

Determining the ROD (task 1) and forming the mesh (task
2) roughly correspond to the global FEM steps of dividing
the domain (step 1) and finding the interpolating function

(step 2). Task 3, where the agents solve the FEM problem,
covers both the assembling (step 3) and solving (step 4)
steps of global FEM. One advantage of using ADMM over
other solving methods is that assembly happens locally on
the agents; individual entries in K and g are never explicitly
constructed by any agent. Task 4, querying, is the distributed
version of post-processing (step 5).

We now discuss each step of distributed VIM individually.
For clarity, we assume that every agent takes one measure-
ment with one sensor, so there are n agents, n measurements,
and n sensors; however, this method easily allows agents to
take multiple measurements with multiple sensors.

1) Region of Dominance: Each agent establishes a region
of dominance (ROD) Ωi ⊂ Ω, partitioning Ω into n non-
overlapping regions that approximately cover Ω. If two
agents have intersecting RODs, they are neighbors and must
be able to communicate.

We use bounded Voronoi regions for establishing
RODs, defined as the set of all points (x, y) such that
‖(x, y)− (xi, yi)‖ < ‖(x, y)− (xj , yj)‖ and (x, y) ∈ Ω for
all i 6= j. Two agents are Voronoi neighbors if their Voronoi
regions share an edge. If the agents know their absolute
position and can communicate with their Voronoi neighbors,
the algorithm of [19] allows distributed computation of the
region. As argued in [19], this communication requirement
results in scalable networks because, on average, each agent
has, at most, six neighbors.

2) Consistent Mesh: Once the agents know their ROD,
they must form a mesh consistent with their neighbors’
meshes. Although agents compute their meshes indepen-
dently, agents with shared edges must place any mesh
vertices on those edges at the same location. Assuming a
polygonal ROD, every agent first divides its edges into the
minimum number of segments such that no segment exceeds
some pre-determined maximum length `max. The vertices
subdividing these edges will be vertices in the resulting mesh,
and, due to symmetry, they will be at the same absolute
location for adjacent agents.

Next, each agent runs the meshing algorithm of [18],
which generates a mesh with no triangle edge lengths ex-
ceeding `max. If the algorithm adds vertices on the ROD
edges, they must be removed. Vertex removal is well-defined
on the structure returned by the meshing algorithm.

3) Distributed FEM: After determining its ROD and
meshing it, every agent i has mi elements and pi nodes. Let
Ei denote the set of elements contained in agent i’s ROD.
Since elements are not shared between agents, Ei and Ej

are disjoint for i 6= j. Thus, each agent has a regional node
vector q̄i ∈ Rpi (analogous to q), which is related to the
node vectors for each element in its region by

qf = L̄f q̄i, for all f ∈ Ei, (16)

where the stochastic Boolean matrix L̄f is analogous to Le.
Likewise, we form the regional matrices K̄i and ḡi anal-

ogously to equations (14) and (15) according to

K̄i =
∑
f∈Ei

L̄T
fKf L̄f (17)

and
ḡi =

∑
f∈Ei

L̄T
f gf . (18)

The map between agent i’s node vector and the global
node vector is given by g(i, j) such that [q̄i]j corresponds to
[q]g(i,j), where [·]j indicates the j-th entry in a vector.

Using equations (10), (6), (17), and (18), we derive the
following constrained minimization problem:

argmin

n∑
i=1

(
q̄Ti K̄iq̄i − 2q̄Ti ḡi

)
with respect to q̄i, for i = 1 ton

subject to [q̄i]j = [q]g(i,j), for i = 1 ton and j = 1 to pi.
(19)

Note that the measurements enter the minimization prob-
lem (19) via the term ḡi. The distributed ADMM method
of [8] allows every agent to solve this problem for its own q̄i.
Due to the constraints on q̄i, the union of all agents solutions
is equivalent to solving the global FEM problem on the union
of all agents’ meshes.

Let Ni,j be the set of all pairs (k, l) such that
[q̄k]l = [q]g(i,j). In other words, Ni,j is the set of all agent-
index, local-node-index pairs corresponding to the global
node index g(i, j). The cardinality of Ni,j , |Ni,j | is then the
number of local nodes corresponding to a given global node.
To implement ADMM, every agent i iterates over three steps.
We show a version specific to our problem derived from [8]:

[ξi(t)]j =
1

|Ni,j |
∑

(k,l)∈Ni,j

[q̂k(t)]l, (20)

q̂i(t+ 1) = (K̄i + ρI)−1(ḡi − νi(t) + ρξi(t)), (21)
νi(t+ 1) = νi(t) + ρ (q̂i(t)− ξi(t)) , (22)

where ρ > 0 is an optimization parameter, t is the discrete-
time index, ξi(t) ∈ Rpi , q̂i(t) ∈ Rpi and νi(k) ∈ Rpi

are the state variables of the ADMM algorithm. The agents
execute this algorithm repeatedly until a stopping condition
is met; we use a fixed number of iterations, but adopting
the stopping criteria of [8] is left for future work. When the
algorithm completes, the agents take new measurements and
the process begins again, allowing estimation of changing
fields.

The first step, equation (20), averages all of the local node
values that correspond to a given entry in q, and is the only
step that requires communication. Only nodal values on the
boundary of an ROD must be transmitted; nodes on the
interior of the ROD directly correspond to a unique entry
in q and need not be communicated.

Equation (21) is the primal update step, and q̂i(t) is agent
i’s local estimate of q̄i. The third step, equation (22) updates
the dual variable νi(k). Neither the primal nor the dual
update steps require communication. When the algorithm
converges, the entries of ξi(t) and q̂i(t) converge to the
corresponding entries in q, so every agent has a piece of
the global FEM solution.

The agents cannot compute equation (20) directly because
they do not know g(i, j). However, if agents i and j are not
neighbors they do not share nodes and do not contribute to
each others’ ξi(t) update; thus agents only must commu-
nicate with their ROD neighbors. Additionally, as long as
neighboring agents know the correspondence between the
nodes shared with their neighbors, they can compute (20) by
averaging all values corresponding to the same node without
knowing the global index g(i, j). Therefore, agents transmit
nodal values on their ROD boundary and some book-keeping
information that allows the agents to determine which shared
nodes correspond to the same global node.

For example, in the worst case, agents can transmit nodal
positions along with nodal values. They can then determine
which of their neighbors’ nodes correspond to the same
global node. In a more efficient method, agents group their
nodal values by ROD edge, labeling each group with the
neighboring agent’s identifier and sorting the nodes with
in each group in counter-clockwise order relative to the
transmitting agent. This technique allows agents to associate
the entries in their nodal vector with the nodal values of their
neighbors.

Overall, an agent’s memory use increases with the number
of nodes in its local mesh. For a fixed number of global
nodes, adding more agents decreases the number of nodes
per agent (and hence its memory usage); alternatively, adding
more agents with fixed capabilities allows the number of
global nodes to increase. Thus the agents’ memory usage
scales with respect to environment representation.

Communication per agent does not directly depend on
the environmental representation size, but rather it increases
with the number of nodes on ROD boundaries. For Voronoi
regions, as the number of agents increases, the number of
Voronoi edges (and hence communication neighbors) per
agent remains (on average) constant [20]. As agent density
increases, Voronoi region perimeter decreases, and, for fixed
`max, the number of shared nodes per agent approaches the
number of Voronoi vertices for that agent’s region. Hence,
the communication requirements per agent do not increase
with increasing agent density. The solutions obtained by
individual agents, however, always match the global solution
determined over an equivalent global mesh.

A. Queries

Although agents estimate the field within their own RODs,
they do not know the field outside their ROD. A query system
allows a user at a base station to retrieve the estimate at
any location by asking any agent. A user can make sparse
queries over the whole field to obtain a broad estimate and
then focus on areas of particular interest. If there are many
agents and measurements, making these queries requires
significantly less data than sending all measurements back
to a central computer, a savings that is compounded if
communication with a base station is more costly than agent-
to-agent communication (e.g., satellite vs. XBee).

Queries consist of the location of the desired estimate.
Upon receiving a query, a naive approach employs depth

first search: if the point is in the agent’s region it returns
the estimate, otherwise it forwards the request to one of
its neighbors. That neighbor repeats the process, but will
only return the request to the initiator after it has exhausted
all other neighbors. Since the graph is connected and the
agents completely cover the region, an agent with the desired
information will eventually be found. This search can usually
be made more efficient by always picking the next neighbor
based on which is closest to the vector from the current agent
to the destination. By alternating between running ADMM
iterations until convergence and several rounds of querying,
time-varying fields can be monitored if they change slowly.
Algorithm 1 displays the query process from a single agent’s
perspective.

Algorithm 1 Query Implementation
1: neighbors ← {(id, ROD edge), ...}
2: (from, location) ← receive-query-for-location()
3: if location in ROD then
4: send-estimate-to(from, my-estimate-at(location))
5: else
6: repeat
7: to ← edge-closest-to(location, neighbors)
8: neighbors ← remove(neighbors, to)
9: response ← send-query(to)

10: until has-estimate(response) or is-empty(neighbors)
11: if is-empty(neighbors) then
12: send-not-found-to(from)
13: else
14: send-estimate-to(from, response)
15: end if
16: end if

V. SIMULATIONS

We simulate 18 agents in an environment given by
φ̄(x, y) = x4y+x3y+y2+x2+2 over a unit square centered
at (0.5, 0.5). The agents have zero mean Gaussian sensor
noise with variance of 0.1. Agents use `max = 0.25, α0 = 0,
α1 = 0.3, ρ = 1, µi = 1 and φ0(x, y) = 0. Figure 2 depicts
the agents’ Voronoi regions, their meshes, their estimates,
and a location that the base station queried after running
the ADMM algorithm for 8000 time-steps. Figure 3 depicts
the actual field and Figure 4 shows the error, averaged over
100 Monte-Carlo runs. The distributed solution and standard
VIM solution over the same mesh yield the same results.
The query was initially directed at agent zero, and the arrows
show the chain of queries needed to determine the value at
(0.7, 0.6). Due to noise and because no interpolation method
is perfect, the actual and estimated values differ.

VI. CONCLUSION

We have introduced distributed VIM (DVIM), which uses
a distributed FEM solver based on ADMM to generate envi-
ronment estimates. Although the estimates generated match
a centralized solution, no single agent has a full environment
representation. The scaling properties of the algorithm mean

Fig. 2. The agents estimates, the mesh, their Voronoi region, and the path
of a query. Agent (and measurement) locations are marked with blue dots,
with the numbers providing the agent’s identifier.

Fig. 3. The actual field.

that adding more agents more densely in the environment
does not increase the communication or memory burdens of
individual agents. More densely distributed agents, however,
provide more detailed and accurate environment estimates.
A query system allows a user to determine the environment
estimate at any given location. Future work includes devel-
oping control laws for mobile DVIM agents, estimating an
error field from VIM (using the techniques of [4], [6], [21]),
and explicitly incorporating time-varying field models into
the estimation.

REFERENCES

[1] D. M. Glover, W. J. Jenkins, and S. C. Doney, Modeling Methods for
Marine Science. Cambridge: Cambridge University Press, 2011.

[2] P. Brasseur, J. Beckers, J. Brankart, and R. Schoenauen, “Seasonal
temperature and salinity fields in the mediterranean sea: Climatological
analyses of a historical data set,” Deep Sea Research Part I:
Oceanographic Research Papers, vol. 43, no. 2, pp. 159 – 192, 1996.

[3] C. Troupin, M. Ouberdous, D. Sirjacobs, A. Alvera-Azcárate,
A. Barth, M.-E. Toussaint, S. Watelet, and J.-M. Beckers,
Diva User Guide, GeoHydrodynamics and Environment Research,
MARE (GHER), University of Liege, 2015. [Online]. Available:
http://modb.oce.ulg.ac.be

[4] C. Troupin, A. Barth, D. Sirjacobs, M. Ouberdous, J.-M. Brankart,
P. Brasseur, M. Rixen, A. Alvera-Azcrate, M. Belounis, A. Capet,
F. Lenartz, M.-E. Toussaint, and J.-M. Beckers, “Generation of
analysis and consistent error fields using the data interpolating
variational analysis (diva),” Ocean Modelling, vol. 5253, no. 0, pp.
90 – 101, 2012.

Fig. 4. Absolute value of the error between the estimate and the actual
field averaged over 100 Monte-Carlo runs.

[5] A. Barth, A. A. Azcárate, P. Joassin, J.-M. Becers, and C. Troupin,
Introduction to Optimal Interpolation and Variational Analysis, Geo-
Hydrodynamics and Environment Research (GHER), 2008.

[6] J. Brankart and P. Brasseur, “The general circulation in the
mediterranean sea: a climatological approach,” Journal of Marine
Systems, vol. 18, no. 13, pp. 41 – 70, 1998.

[7] J. Fish and T. Belytschko, A First Course in Finite Elements. John
Wiley & Sons, 2007.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends R© in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[9] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algo-
rithms and data structures for massively parallel generic adaptive finite
element codes,” ACM Trans. Math. Softw., vol. 38, pp. 14/1–28, 2011.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[11] S. Martinez, “Distributed interpolation schemes for field estimation by
mobile sensor networks,” Control Systems Technology, IEEE Transac-
tions on, vol. 18, no. 2, pp. 491–500, March 2010.

[12] K. Lynch, I. Schwartz, P. Yang, and R. Freeman, “Decentralized
environmental modeling by mobile sensor networks,” Robotics, IEEE
Transactions on, vol. 24, no. 3, pp. 710–724, June 2008.

[13] J. Cortes, “Distributed kriged kalman filter for spatial estimation,”
Automatic Control, IEEE Transactions on, vol. 54, no. 12, pp. 2816–
2827, Dec 2009.

[14] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed
robotic sensor networks: An information-theoretic approach,” Interna-
tional Journal of Robotics Research, vol. 31, no. 10, pp. 1134–1154,
September 2012.

[15] G. Battistelli, L. Chisci, N. Forti, S. Selleri, and G. Pelosi,
“Decentralized consensus finite-element kalman filter for field
estimation,” CoRR, vol. abs/1604.02392, 2016.

[16] S. Grime and H. Durrant-Whyte, “Data fusion in decentralized sensor
networks,” Control Engineering Practice, vol. 2, no. 5, pp. 849 –
863, 1994.

[17] G. Battistelli, L. Chisci, N. Forti, G. Pelosi, and S. Selleri, “Distributed
finite element kalman filter,” in Control Conference (ECC), 2015
European, July 2015, pp. 3695–3700.

[18] L. Rineau, “2D conforming triangulations and meshes,” in CGAL
User and Reference Manual, 4.7 ed. CGAL Editorial Board, 2015.

[19] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” in Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on, vol. 2,
2002, pp. 1327–1332.

[20] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and D. G. Kendall,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams,
2nd ed. John Wiley and Sons, 2000.

[21] P. C. McIntosh, “Oceanographic data interpolation: Objective analysis
and splines,” Journal of Geophysical Research: Oceans, vol. 95,
no. C8, pp. 13 529–13 541, 1990.

