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Dynamic In-Hand Sliding Manipulation
Jian Shi, J. Zachary Woodruff, Student Member, IEEE, Paul B. Umbanhowar, and Kevin M. Lynch, Fellow, IEEE

Abstract—This paper presents a framework for planning the
motion of an n-fingered robot hand to create an inertial load on
a grasped object to achieve a desired in-grasp sliding motion. The
model of the sliding dynamics is based on a soft-finger limit sur-
face contact model at each fingertip. A motion planner is derived
to automatically solve for the finger motions for a given initial and
desired configuration of the object relative to the fingers. Iterative
planning and execution are shown to reduce the errors that occur
due to the modeling and trajectory tracking errors. The frame-
work is applied to the problem of regrasping a laminar object
held in a pinch grasp. We propose a limited surface model of the
contact pressure distribution at each finger to predict the sliding
directions. Experimental validations are shown, including iterative
error reduction and repeatability of the experiment.

Index Terms—Dexterous manipulation, dynamics, grasping,
in-hand manipulation, manipulation planning.

I. INTRODUCTION

A. Background

MOST human, animal, and even robot manipulation tasks
involve controlling motion of the object relative to the

manipulator, particularly in nonprehensile (graspless) manipu-
lation modes such as pushing, rolling, pivoting, tipping, tapping,
and kicking. Even in pick-carry-place manipulation, in which
the carry portion of the task keeps the object stationary relative
to the hand, the pick and place phases typically involve the ob-
ject sliding or rolling on the fingers as the hand achieves a firm
grasp or releases the object. Other examples of controlled rela-
tive motion in grasping manipulation include finger gaiting, in
which the fingers quasi-statically walk over the object to achieve
a regrasp, all the while maintaining a stable grasp, rolling the
object on the fingertips, and letting the object slide relative to the
fingertips. Together we refer to these types of relative motion as
in-hand manipulation.

We are studying in-hand manipulation by controlled sliding
for three purposes:
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Fig. 1. ERIN instrumented manipulation environment, showing the WAM
arm, the Allegro hand, four BioTac tactile sensing fingertips, and part of the 10-
camera OptiTrack motion capture system. In this work, we replace the Allegro
hand and tactile sensors with a lightweight parallel gripper as discussed in
Section VIII and shown in Fig. 9.

1) Error-corrective sliding in an assembly task: The prob-
lem is to choose a grasp configuration satisfying force-closure
constraints as well as providing error-corrective sliding motion
in response to likely disturbance forces during the place opera-
tion. For example, uncertainty in a peg-in-hole assembly task re-
sults in contact forces that should be mapped to error-corrective
motion, using the remote center of compliance device [1] or
using active accommodation control [2]. Alternatively, it is pos-
sible to use sliding at the fingertips as the source of compliance.
By the choice of finger locations and normal forces, we can con-
trol the shape of the grasp limit surface (see Sections II and V),
which governs the mapping from contact forces to sliding direc-
tions, much like an accommodation control law maps contact
forces to corrective velocities.

2) Regrasping using external contacts: The goal of the pre-
vious task is to achieve a desired object configuration relative
to external fixtures. In this task, the goal is to achieve a desired
object configuration relative to the hand. Contact with the envi-
ronment is used to generate forces that cause the object to slide
relative to the fingers to a desired new grasping configuration.
A manually designed example of this task can be found in [3].

3) Regrasping using dynamic loads: In the previous task,
the forces causing the regrasp come from contact. In this task,
the hand uses object inertia to cause it to slide to the desired
new grasp by accelerating the hand beyond the point the finger
friction forces can resist relative motion.

This paper focuses on the last problem: accelerating the hand
to achieve a desired regrasp. Our testbed is the ERIN robot
manipulation system as shown in Fig. 1. Assuming the fingers
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are compliantly mounted, and the initial grasp configuration is
chosen, current research problems include:

1) given the state of the hand and object, the contact normal
forces, and the acceleration of the hand, find the relative
acceleration of the object (forward dynamics);

2) given the state of the hand and object and the desired
relative acceleration of the object, find appropriate hand
accelerations and contact normal forces (inverse dynam-
ics);

3) plan the hand motion (and possibly contact normal forces)
to achieve a desired regrasp;

4) repeatedly plan and execute hand motions to iteratively
reduce grasp error;

5) use real-time feedback control of hand motion and finger
normal forces during sliding motion to achieve the desired
regrasp; and

6) estimate friction properties from observed hand and object
motions, given the contact normal forces.

In this study, we use a simple, spring-actuated passive hand
in place of the Allegro hand and tactile sensors, and we study
items (1)–(4) above. In particular, we focus on the case of
planar motion, in which the laminar object moves with three
degrees of freedom (two translational and one rotational) and
the fingers contact the object on opposite sides that are parallel
to the plane of motion. This paper extends our preliminary
work reported in [4].

B. Paper Outline

Section II reviews previous work on which this paper builds.
In Section III, we solve problems (1)–(4) for a simple 1-DOF ex-
ample, as a template for the more general case. In Section IV, we
generalize the problem statement to an n-fingered grasp moving
in a plane. In Section V, we discuss the limit surface model for
friction and derive expressions for the frictional wrench given
the sliding velocity of an object in an n-fingered grasp con-
sisting of patch contacts. In Section VI, we derive the sliding
dynamics within the motion plane and outline a method to cal-
culate the acceleration of the object relative to each finger given
the accelerations of the fingers. In Section VII, we solve the
finger motion planning problem for a given n-fingered grasp to
achieve a desired regrasp.

The material in Sections IV–VII solves the planar regrasp
problem for general n-fingered grasps of an object with parallel
faces. The details of the finger normal forces and grasp limit
surface depend on the particular grasp configuration, however.
In Section VIII, we derive the details of the grasp limit surface
for a particular type of grasp, a two-fingered pinch grasp. In
Section IX, we implement the motion planning algorithm for
in-hand manipulation with a two-fingered pinch grasp, and we
show experimentally that iterative planning and execution can
further reduce error in the final grasp configuration.

II. RELATED WORK

A. In-Hand Manipulation

There has been extensive work on kinematic in-hand manip-
ulation where an object is moved relative to a finger without

breaking contact or sliding on the surface. This is sometimes re-
ferred to as precision manipulation. Li et al. [5] and Yoshikawa
and Nagai [6] used rigid, rolling finger contacts to calculate
grasp stability and manipulability, and to develop controllers
for tracking a position trajectory while maintaining a desired
grasp force. More recent related work by Rojas and Dollar [7]
estimated the precision manipulation capabilities of arbitrary
manipulator/object configurations for use in autonomous ma-
nipulation planning.

In-hand sliding manipulation can also be used to quickly
reposition an object in the hand. Traditional dexterous regrasp
methods such as finger gaiting or “pick” and “place” may be
slow or impossible given the number of fingers or the surround-
ing environment. Brock [8] addressed the problem of controlled
sliding by first generating a constraint state map that outlines
constraints on a grasped object due to the contact types and
forces. By varying the contact forces he achieved controlled slid-
ing in desired directions for a grasped cylinder. Cole et al. [9]
explored a dynamic coordinated control scheme to reposition
objects with controlled slip. Trinkle and Hunter [10] extended
the dexterous manipulation planning problem to consider rolling
and slipping contact modes. The hybrid planning problem was
further developed by Yashima et al. [11]. The space of reach-
able object states can be further expanded by breaking con-
tact with a single finger, moving it, and regrasping the object
while the remaining fingers maintain the object in force clo-
sure. This in-hand regrasp technique is called finger gaiting
[12]–[13].

Dynamic forces can also be used for in-hand manipulation.
Furukawa et al. [14] demonstrated regrasping by tossing a foam
cylinder up and catching it. Chavan-Dafle et al. [3] tested hand-
coded regrasps that take advantage of external forces such as
gravity, dynamic forces, and contact with the environment to
regrasp objects using a simple manipulator. A more recent work
by Chavan-Dafle et al. [15] explored in-hand manipulation of
an object by external contacts with the environment. With de-
signed finger actions, motions of the object were simulated and
validated experimentally with different shapes of contacts. Viña
et al. [16]–[17] showed that by using adaptive control with vi-
sion and tactile feedback, monodirectional pivoting of an object
pinched by a pair of fingers can be achieved by changing the
gripping forces. Kumar et al. [18] programmed a pneumati-
cally actuated hand to learn in-hand manipulation skills using
model-based reinforcement learning. Sintov and Shapiro [19]
developed an algorithm to swing up a rod by generating gripper
motions, in which the contact point was modeled as a pivot joint
that can apply frictional torques. The method was validated in
simulation. Hou et al. [20] studied dynamic planar pivoting of
a pinched object driven by the hand swing motion and contact
normal force control.

Arisumi et al. [21] explored casting manipulation where a ma-
nipulator is thrown and its “free flight” trajectory is controlled
in midair using tension forces on a tether. Similarly, dynamic
in-hand sliding motions allow the manipulator to impart forces
on the object during motion. This allows for feedback control
and the ability to quickly regrasp the object at any point through-
out the trajectory.
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B. Friction Modeling

Goyal et al. [22]–[24] describe the concept of a limit sur-
face as a 2-D surface in a 3-D force–moment space. The limit
surface defines the maximum set of external wrenches that can
be resisted by the frictional forces due to the contact. Xydas
and Kao [25] derived models of soft-finger contacts and the
resulting limit surfaces. Recent work by Zhou et al. [26] pro-
posed a fourth-order polynomial limit surface model for planar
sliding and identified model parameters using simulation and
experimental data.

III. 1-DOF EXAMPLE

In this section, we address research topics (1)–(4) from the
introduction for a 1-DOF example with no gravity. This example
serves as a template for the more general problem beginning in
Section IV.

Consider an object that accelerates in the positive or negative
direction due to frictional contact with a single finger. Based on a
Coulomb friction coefficient μ and a normal force fN , the finger
can provide a tangential force to the object of up to μfN before
sliding. We assume the object has unit mass, so the maximum
object acceleration is ao = μfN . We also assume the finger is
capable of a maximum acceleration af > ao . Additionally, we
define a finger acceleration a greater than 0 but less than ao .
The relationship between the accelerations can be written as
af > ao > a > 0.

Let qf (0) = qo(0) be the initial position of the finger and
the object w.r.t. the world frame W respectively, and let d(t) =
qo(t) − qf (t) be the object position relative to the finger position
at time t. The problem is to choose a finger acceleration profile
q̈f : [0, T ] → R that causes the object to slide relative to the
finger by dgoal at time T , i.e., d(T ) = qo(T ) − qf (T ) = dgoal as
shown in Fig. 2. Without loss of generality, assume dgoal > 0.
Similar reasoning applies for the case dgoal < 0.

A. Forward Dynamics

The forward dynamics problem is to determine the relative
sliding acceleration d̈ given a finger acceleration q̈f . If ḋ �= 0,
then d̈ = sgn(ḋ)ao − q̈f . If ḋ = 0 and |q̈f | ≤ a0 , no sliding oc-
curs (d̈ = 0). If ḋ = 0 and |q̈f | > a0 , then d̈ = sgn(q̈f )a0 − q̈f .

B. Inverse Dynamics

The inverse problem is to determine the finger acceleration q̈f
that achieves a desired relative sliding acceleration d̈. If ḋ �= 0,
then q̈f = sgn(ḋ)ao − d̈. If ḋ = d̈ = 0, no slip occurs so any
|q̈f | ≤ ao is valid. If ḋ = 0 and |d̈| > 0 (you are trying to initiate
slip), then q̈f = sgn(d̈)a0 − d̈.

C. Motion Planning

We assume the finger and object are initially at rest and
qf (0) = qo(0) = 0, and require that the finger’s net displace-
ment and velocity after the motion are zero. To achieve the
sliding regrasp while satisfying these constraints, we first ac-
celerate the finger with q̈f = a for time T1 . We then apply the

Fig. 2. (Top) Configuration of the 1-DOF system. The red diamond shows
the center of mass (CM) of the object and the blue dot shows the contact point
of the finger. (Bottom) An example of in-hand sliding of the 1-DOF system
with initial condition qf (0) = qo (0) = 0. The finger initially accelerates to the
right, and then accelerates to the left causing the finger to slide on the object and
achieve a desired position relative to the object CM dgoal. The corresponding
acceleration, velocity, and position profiles are shown in Fig. 3.

maximum negative acceleration q̈f = −af for time T2 . Next
we apply q̈f = a for time T3 + T4 = T34 . To achieve zero final
displacement and velocity for the finger, we choose T1 = T34
and q̇f (T1) = −q̇f (T1 + T2).

The motion plan consists of three phases: an initial stick-
ing phase of duration T1 , a sliding phase of duration T2 + T3 ,
and a final sticking phase of duration T4 . During phase 1
(0 ≤ t < T1), ḋ is zero and |q̈f | ≤ ao so no relative motion
occurs. During the first part of phase 2 (T1 ≤ t < T1 + T2),
the negative acceleration is sufficiently high that sliding occurs
(q̈f < −ao ). During the second part of phase 2 (T1 + T2 ≤
t < T1 + T2 + T3), the acceleration magnitude is decreased
(|q̈f | ≤ ao ), but ḋ �= 0 so sliding still occurs until ḋ→ 0. During
phase 3 (T1 + T2 + T3 ≤ t < T1 + T2 + T3 + T4), the object is
sticking and ḋ = 0. Fig. 2 shows an example of in-hand sliding
of the 1-DOF system. The full series of accelerations, resulting
velocities, and positions are shown in Fig. 3.

The total relative sliding distance dgoal is the integral between
the finger and object velocity curves in the sliding phase. With
given values of af , ao , a, and dgoal, we solve the following con-
straints to find the durations T1 , T2 , T3 , and T4 :

2aT1 = af T2 (1)

ao(T2 + T3) = a(2T1 − T3) (2)

dgoal = 0.5(af − ao)(T 2
2 + T2T3) (3)

T4 = T1 − T3 . (4)
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Fig. 3. Plot of the system motion profile of the 1-DOF problem. The solid blue
curves represent the motion of the finger and the dashed red curves represent
the motion of the object. The object has unit mass. In the velocity profile, the
orange shaded area is the relative sliding distance.

Equation (1) enforces that the finger velocity at time T1 + T2
is the opposite of the finger velocity at time T1 . Equation (2)
requires the object to stop slipping relative to the finger at time
T1 + T2 + T3 . Equation (3) enforces the desired slipping dis-
tance of the object. Together, (1), (2), and (4) ensure the total
finger displacement is zero after the regrasp motion. The chosen
constraints ensure that T1 , T2 , T3 , and T4 can be solved for an-
alytically, which simplifies the 1-DOF problem. We can solve
(1)–(3) for T1 , T2 , T3 as:

T1 =
af
a

√
dgoal(a+ ao)

2(a+ af )(af − ao)

T2 =

√
2dgoal(a+ ao)

(a+ af )(af − ao)

T3 =

√
2dgoal(af − ao)

(a+ af )(a+ ao)
. (5)

D. Iterative Error Reduction

Following the execution of a planned repositioning trajec-
tory, there will be some error in the actual relative displacement
due to trajectory tracking error, errors in initial conditions, or
unmodeled dynamics. A significant source of error is an incor-
rect estimate of the friction coefficient μ. The following theorem
shows that iterated executions of motion plans based on updated
displacement information are sufficient to bring the object to the
desired goal position dgoal in the presence of significant uncer-
tainty in the friction coefficient.

Fig. 4. Friction uncertainty affects the sliding distance. We denote
d1 , d2 , d3 , d4 as the areas of different triangles and d1 + d2 = d3 + d4 =
dgoal. The areas d2 and d3 show the uncertainty in the sliding distance. Area
d2 represents the error when the friction coefficient is underestimated, and d3
represents the overestimated case.

Theorem 1: Consider the 1-DOF sliding regrasp system with
a desired net sliding distance dgoal, a known constant normal
force fN , an estimated friction coefficient μ0 , and an actual
(unknown) constant friction coefficient μ ∈ [μ0(1 − ε), μ0(1 +
ε)] for a friction coefficient uncertainty 0 < ε < 2/3.

For any acceleration a in the range μ0fN (2ε− 1) < a <
μ0fN (1 − ε), and for any positive constant ρ satisfying

μ0 fN ε
a+μ0 fN (1−ε) < ρ < 1, by iterating the finger motion described
in Section III-C (where dgoal is recalculated at each iteration
based on perfect sensor data), the error in the net sliding distance
converges exponentially to zero at least as fast as ρk converges
to zero as the iteration number k goes to infinity, provided

af ≥ μ0fN [μ0fN (1 − ε) + a(ε/ρ+ 1)]
a− μ0fN [ε(1 + 1/ρ) − 1]

.

Proof: See Appendix A.
Remark: From the condition on af given in Theorem 1, as

the chosen value of ρ gets smaller, the required minimum value
of af increases to ensure the convergence property.

The following example shows how choices of a, ρ, and af
affect the iterative reduction algorithm. For a given ao > 0
and ε = 0.2, we choose a = 0.4ao . The feasible range of ρ is
0.167 < ρ < 1 according to the ρ constraints from Theorem 1.
Note that the value of ρ determines the basic error convergence
rate, and also affects the lower bound of the maximum finger
acceleration af .

In practice, the choice of ρ and af should be based on ma-
nipulator acceleration constraints. Choosing ρ = 0.5 requires a
finger acceleration af to be at least 1.7a0 to ensure that the
error can be driven to zero at the rate ρk . Fig. 5 illustrates
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Fig. 5. Iterative reduction of the net error in sliding distance. The worst-case
scenarios are shown, in which the actual friction coefficient is at the extreme
μ = μ0 (1 − ε) and μ0 (1 + ε). The solid black curves show the bounding
convergence rate ±ρk .

how the net sliding distance error converges to zero by iterating
the motion planning in worst-case scenarios μ = μ0(1 − ε) and
μ = μ0(1 + ε).

IV. GENERAL PROBLEM STATEMENT

In this section, we generalize the in-hand manipulation prob-
lem outlined in Section III to an n-fingered grasp, and define
notation used in the rest of the paper.

We assume the object to be a laminar part that moves in a
plane, held by n patch-contact fingers located on opposite sides
of the part. The laminar part, and all motion of the part, are in a
plane fixed at an angleα relative to a horizontal plane orthogonal
to the gravity direction. A fixed frame W is defined in the plane
of motion such that its x- and y-axes are basis vectors for the
plane of motion and the y-axis is opposite to the projection of
the gravity vector to the motion plane g‖ = [0,−mg sinα]T , as
shown in Fig. 6.

The mass of the object is denoted by m, and its scalar inertia
about its CM is I . The sum of out-of-plane forces applied to
the object satisfies force balance at all instances so the object
remains in the xy-plane of frame W . We assume we can control
the acceleration of each finger.

Frame B is the body frame fixed to the CM of the object, and
the xB and yB axes are in the plane of the object. The finger
contact patches are assumed circular. The frame Fi of the ith
finger is located at the center of the finger’s contact patch. We
denote B+ and F+

i as frames where the origins are coincident
with B and Fi , respectively, and the axes are aligned with W .
All configurations and velocities are defined with respect to
the world frame W unless noted otherwise. All vectors are
written in bold lowercase letters, all matrices are written in
bold capital letters, and scalars are written in italic letters. We
denote the configuration of the object by its poseqo = [x, y, θ]T ,
representing the position and orientation of B relative to W .
The location of the frame Fi is qf i = [xf i, yf i , θf i ]T , and the
entire n-fingered grasp is defined as qf = [qTf 1 , . . . ,q

T
f n ]T . The

relative positions between the object and the finger contacts
are defined as rf i = [xrf i , yrf i , θrf i ]T , where qf i = qo + rf i ,
and the relative position for the entire grasp is defined as rf =
[rTf 1 , . . . , r

T
f n ]T . The configuration and velocity of the system

are denoted as q = [qTo ,q
T
f ]T and q̇ = [q̇To , q̇

T
f ]T . The full state

of the system is defined as [qT , q̇T ]T . Fig. 6 shows an example
of a planar system with a rectangular object and patch contact
fingers.

Fig. 6. Laminar object grasped by n patch contact fingers. (Top) View of the
system in the object plane. The variables are defined in Section IV. (Bottom)
The angle between the object plane and the horizontal plane is denoted as α.

V. FRICTIONAL LIMIT SURFACES

In this section, we discuss the concept of frictional limit sur-
faces (LS) and how they are shaped given circular patch con-
tacts. Additionally, we derive expressions for the frictional force
applied to the object from a patch contact with a given finger
velocity relative to the object, and for the grasp limit surface
given n individual limit surfaces.

A. Patch Contact

In this paper, friction is assumed to conform to Coulomb’s
law. For a circular patch contact, we denote f = [fx, fy ,mz ]T

as the frictional wrench applied to the object expressed in frame
F+ . To describe the boundary of the frictional wrenches given
the contact normal force, we use the concept of a frictional
limit surface [22]–[24]. Frictional limit surfaces are convex and
closed. When the frictional wrench f lies within the LS, the
finger sticks on the object; and if the finger slides with velocity
v relative to the object, the frictional wrench fc is on the LS
at a location where v is normal to the LS at fc to satisfy the
maximum work inequality (see Fig. 7).

The LS for a soft-finger contact can be approximated by an
ellipsoid in the local frame [25]. A mathematical representation
of the LS is given by the following quadratic form expressed in
a local frame F+ :

fT Af = 1 (6)
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Fig. 7. Ellipsoid limit surface expressed in a local frame F+ attached to the
center of the contact. The sliding direction v is along the normal of the ellipsoid
at the corresponding frictional wrench fc .

where the matrix A ∈ R3×3 is a symmetric positive-definite
matrix that determines the shape of the LS ellipsoid.

During sliding, the frictional wrench fc lies on the LS, and
we can write the relative velocity v along the direction of the
gradient of the ellipsoid with respect to f at fc as

v = λ
∂

∂f

(
fT Af

)∣∣∣∣
fc

(7)

for some λ ∈ R, which scales the normal vector to the relative
velocity vector. For a given relative velocity, the corresponding
frictional wrench can be written as

fc =
1
λ
Bv (8)

where B = 1
2 A−1 . Substituting (8) into (6) and utilizing

(A−1)T = A−1 , we have

λ =
1
2

√
vT A−1v. (9)

Combining (8) and (9), we derive the function Γ(·), which gives
the frictional wrench as a function of a given relative velocity v

fc = Γ(v) =
A−1v√
vT A−1v

. (10)

B. Grasp Limit Surface

When multiple fingers contact an object, the individual LS
can be mapped to a common frame to generate the grasp limit
surface (GLS). Let fi represent the frictional wrench applied
to the object expressed in the local frame F+

i . A reasonable
choice of a common frame is the frame B+ . The 3 × 3 matrix
G(rf i) is the map relating the frictional wrench fi in F+

i to
the wrench expressed in B+ . Matrices G(rf i) depend on the
contact position relative to the object CM and is defined as

G(rf i) = Gi =

⎡
⎣ 1 0 0

0 1 0
−yrf i xrf i 1

⎤
⎦ . (11)

The grasp limit surface is the convex hull of the sum of all
possible friction forces that the grasp can resist. The GLS can
be expressed in B+ as

GLS = δ

{
f |f =

n∑
i=1

Gifi ∀ fi ∈ LSi

}
(12)

where δ is an operator that takes the boundary of the set, f =
[fx, fy ,mz ]T is an arbitrary friction force on theGLS, and LSi
is the limit surface for contact i.

Fig. 8 shows an example of a four-fingered grasp on an object
and the resulting limit surfaces with frictional torques about
the corresponding contact center, transferred frictional torques
expressed in B+ , and the combined grasp limit surface.

VI. DYNAMICS

In this section, we derive the dynamics for the case where
the object is sticking and when it is sliding. We assume that
the system state [qT , q̇T ]T , the matrices Ai that determine the
shape of LSi , and either the desired relative finger accelerations
r̈f i(t) or the finger accelerations q̈f i(t) are given.

A. Sticking Dynamics

The object’s dynamics are defined as

Mq̈o =
n∑
i=1

Gifi + g (13)

where M = diag(m,m, I) is the mass matrix of the object
and g = [0,−mg sinα, 0]T is the wrench on the object due
to gravity in the object plane expressed in frame B+ . For the
sticking case, the frictional force at each contact is contained
within the limit surface, i.e., fTi Aifi < 1.

B. Sliding Dynamics

During sliding, relative velocity at each contact is defined as

vi = q̇f i − GT
i q̇o . (14)

The forward dynamics problem is to determine the relative ac-
celeration of each finger r̈f i when given the state of the system
[q, q̇]T , the LSi shape matrices Ai , and the accelerations of
each finger q̈f i . First, we define the relative acceleration as

r̈f i = q̈f i − q̈o . (15)

The dynamics in (13) can be rewritten as

q̈o = M−1

[
n∑
i=1

Gifi + g

]
. (16)

Combining (10), (14), (15), and (16), we can write the relative
finger acceleration as

r̈f i = q̈f i − M−1

[
n∑
i=1

GiΓ(q̇f i − GT
i q̇o) + g

]
. (17)

This equation allows us to calculate the relative sliding motion
for given finger accelerations, and solves the forward dynamics
problem.

The inverse problem is trivial, and (17) can easily be rear-
ranged to solve for the required finger accelerations when given
a desired relative sliding motion. For the inverse problem, it is
more convenient to give the relative acceleration w.r.t. the body
frame as the input. Denoting r̈Bf i as the relative acceleration
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Fig. 8. Four-fingered grasp and the resulting limit surfaces in the local finger frames, the body frame, and the composite grasp limit surface. (a) Sketch of the
grasp with three fingers on one side and one on the opposite side. (b) Identical limit surface for fingers 1–3 in the local finger frames F+

i . (c)–(e) Limit surfaces

from fingers 1, 2, and 3, respectively, mapped to the common frame B+ using the Gi transformation. (f) Limit surface for finger 4, which is the same in F+
4 as

B+ since they are coincident. (h) Composite grasp limit surface. The axes in (b)–(g) are all aligned and equivalent to the axes in (h).

w.r.t. the body frame B, we have

rf i = Ti(θ)rBf i (18)

where Ti(θ) ∈ SE(2) is the homogeneous transformation that
maps rBf i into rf i

Ti(θ) =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ .

Taking the first and second derivative with respect to time on
both sides of (18) gives

ṙf i = ṪirBf i + Ti ṙBf i (19)

r̈f i = T̈irBf i + 2Ṫi ṙBf i + Ti r̈Bf i . (20)

VII. MOTION PLANNING

In this section, we focus on motion planning to achieve a
desired sliding regrasp. For simplicity, we assume that each
finger of the hand remains stationary relative to the palm of the
hand, so we only plan the motion of the three degrees of freedom
of the palm, not individual motions of the fingers.

The motion planning problem can be stated as: given an initial
grasp of the object and a desired relative configuration between
the object and the hand, find a motion of the hand that achieves
this reconfiguration by dynamic in-hand sliding.

The details of the grasp limit surface, and therefore the sliding
dynamics, are a function of the number of fingers, their place-
ment on the object, and the normal force control strategy. A
specific type of grasp, a two-fingered pinch grasp, is examined
in Section VIII and used in our experiments.

A. Specifications for the Motion Planner

1) The grasp limit surface details for the specific grasp are
given.

2) The hand motion yields a sticking phase, followed by
a sliding phase, followed by a sticking phase. The time
periods for each phase are denoted T1 , T2 , and T3 , respec-
tively, and the total time is denoted Ttotal = T1 + T2 + T3 .

3) From the given initial grasp and desired relative configu-
ration, the initial and goal relative positions between the
object and the fingers rBf ,init and rBf ,goal can be calculated
and are inputs to the motion planner.

4) The relative finger trajectory rBf (t) in the sliding phase and
object trajectories qo(t) in the sticking phases are defined
as cubic polynomials of time, in which each motion com-
ponent is of the form a0 + a1t+ a2t

2 + a3t
3 , defined by

four coefficients. Thus, the start and end position and also
velocity provide four constraints on the four coefficients,
uniquely defining the polynomial as a function of time.

5) The system starts and ends at rest with no relative velocity
between the part and object, so q̇o(0) = 0, q̇o(Ttotal) =
0, ṙBf (T1) = 0, ṙBf (T1 + T2) = 0.

B. Planning Algorithm

With the specifications above, the hand and object motion is
determined by a set of design variables. The system motion is
split into three phases: sticking, sliding, and sticking. In the first
sticking phase, we have to choose the object start configuration
(initial velocity is zero), end configuration, end velocity, and
duration (3 + 3 + 3 + 1 = 10 design variables). For the sliding
phase, we have to choose only the duration of sliding (one
design variable). For the second sticking phase, we have to
specify the final object configuration and the duration of the
phase (3 + 1 = 4 design variables). Thus, there is a total of 15
design variables defining a motion plan. As described below, the
motion planning problem is turned into a nonlinear root-finding
problem to find these 15 variables.

We denote t as the time variable for the entire motion, t ∈
[0, Ttotal], and ti as the time variable for each phase starting at
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zero and ending at the duration of that phase, ti ∈ [0, Ti ], i =
1, 2, 3. The details of the design variables and constraints on
each phase are given below.

1) First Sticking Phase: The design variables are
qo(0),qo(T1), q̇o(T1), and T1 . The use of cubic polynomials
means there are no freedoms in the trajectory shapes once the
boundary conditions are set. Therefore, qo(t1) is determined
with a given set of the ten design variables. Note that because
the initial relative position is not relevant to where the object is
in the world frame, we can choose any initial position qo(0).
The frictional wrench fi(t1) can be calculated by the sticking
dynamics discussed in Section VI-A. Since there is no relative
motion in the sticking phase, the finger motions qf i(t1) are de-
termined as long as qo(t1) and the relative positions rBf ,init are
given.

The constraints that have to be satisfied are manipulator con-
straints (including workspace, velocity, and acceleration limits)
and that the frictional wrenches are always inside the limit sur-
faces during the first sticking phase.

2) Sliding Phase: The design variable is T2 . In the sliding
phase, the cubic polynomial defining the object motion relative
to the hand is fully specified by rBf ,init and rBf ,goal, which are given.
The initial state of the hand is given by the design variables
qo(T1) and q̇o(T1) from the first sticking phase above. To find
the hand motion during this sliding phase, we first solve the
inverse dynamics using the hand state at the beginning of the
trajectory, as well as r̈Bf , to find the hand acceleration q̈f . Taking
a small integration step, we get the next state of the hand, solve
the inverse dynamics again, etc., until we have numerically
constructed the trajectory of the hand during the sliding phase
based on the initial state of the hand and the prespecified relative
object motion during sliding.

The constraints that have to be satisfied in the sliding phase
are manipulator constraints.

3) Second Sticking Phase: The design variables are qo(Ttotal)
and T3 . Similar to the first sticking phase, the hand motion
qf i(t3) and object motion qo(t3) are determined by the speci-
fied final conditions and the initial conditions q(T1 + T2) and
q̇(T1 + T2) from the final state of the sliding phase.

The constraints that have to be satisfied are manipulator con-
straints and that the frictional wrenches are always inside the
limit surfaces during the second sticking phase.

4) Full Motion Planning Problem Statement:

given rBf ,init, r
B
f ,goal

find T1 , T2 , T3 , qo(0), qo(Ttotal), qo(T1), q̇o(T1)

such that rBf (T1) − rBf ,init = 0,

rBf (T1 + T2) − rBf ,goal = 0,

and the dynamics of each phase

and manipulator constraints are satisfied.

This is a multidimensional root-finding problem with con-
straints, and we use MATLAB’s fmincon SQP solver to solve
it. An initial guess of the design variables is automatically gen-
erated based on heuristics encoding our knowledge of the task.

Fig. 9. Lightweight, spring-powered, constant-gripping-force gripper.

Fig. 10. Side view of the system. The green shaded regions show the pressure
distributions of the contacts.

VIII. LIMIT SURFACES FOR A PINCH GRASP

The modeling and motion planning of the previous sections
require the individual fingertip limit surfaces as a function of the
configuration of the object relative to the hand, and these limit
surfaces depend on the specifics of the grasp. In this paper, we fo-
cus on a two-fingered pinch grasp with fingertip patch contacts.
To focus on the essential ideas of this paper, the mechanics of
sliding regrasp, and iterative motion planning and execution, we
built a custom two-fingered passive gripper, shown in Fig. 9. We
use this gripper instead of the Allegro hand for two reasons: 1)
it is lighter than the Allegro hand (0.25 kg versus 1.2 kg), which
allows larger accelerations, and 2) it creates a well-characterized
constant normal force at the fingertips, allowing us to avoid the
potential confounding issue of errors in fingertip force control
while we validate the general approach.

In this section, we describe the contact model of the constant-
gripping-force gripper, and in Section IX we describe regrasp
experiments using it.

A. Pinch–Grasp Description

For this analysis, we focus on the case of a zero-thickness
planar object pinched by two fingers on opposite sides of the
part (see Fig. 10). The two fingers stay stationary relative to
each other, and we assume circular contact patches with the
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same fixed radius a. The plane in which the object and the
manipulator move is tilted by angle α from the horizontal plane
as shown in Fig. 6. We denote fg = −mg cosα as the gravity
force acting on the object in the out-of-plane direction.

Finger 1, on the top of the object, is connected to the manip-
ulator by two hinges and an arm of length L. Finger 2, on the
bottom of the object, is connected to the manipulator through an
arm fixed to the manipulator with the same length L. The two
hinges keep the two flat circular fingers parallel to each other
and in full contact with the object. The distance from the hinges
to the contact of finger 1 is assumed to be zero. The spring is
located LS away from the manipulator and the spring force is
denoted S. This model allows us to control the normal forces at
the fingers by the spring stiffness (another model could be force
control of the manipulator in the normal direction and motion
control in the two linear tangent directions and rotation about
the contact normal).

B. Fingertip Limit Surfaces

We first note four important features of the two-fingered pinch
grasp:

1) Collocated Point Fingers Cannot Hold the Object: Re-
membering that the laminar object is modeled in the limit
of zero thickness, the contact point of each finger would
be at the same point. Therefore, contact forces from the
two collocated fingertips always make zero moment about
the contact point, and they cannot balance the moment due
to gravity. This issue can be addressed by having contact
patches instead of point contacts.

2) Pressure Distribution at a Contact Patch is Generally
Unknowable: If the object and fingertip are modeled as
rigid bodies, then the pressure as a function of the location
on a continuous contact patch will be indeterminate. Our
approach is to use the simplest possible model of the
pressure distribution that is physically consistent, and to
account for any unknowable modeling errors by iterative
regrasping.

3) Simplest Pressure Distribution, Uniform Pressure, is
Physically Inconsistent: If both contact patches have a
uniform pressure distribution, then the two design vari-
ables available (the pressure at each patch) are insufficient
to provide force–moment balance of the object in gravity.

4) Lowest Order Physically Consistent Pressure Distribu-
tion Model is Uniform Pressure on Finger 1 and Linearly
Varying Pressure on Finger 2: The uniform pressure on
finger 1 assures that the total normal force passes through
the rotational joint above the finger. The linearly vary-
ing pressure distribution on finger 2 provides the extra
variable needed to solve uniquely for the pressure distri-
butions while assuring that the object remains in the plane
of motion.

Fig. 10 illustrates the two contact pressure distributions,
viewed from the side. The pressure p1 is constant over the con-
tact patch, modeled as a disk of radius a. The pressure p2 is
also defined over a disk of radius a. Defining a y′ axis as the
axis from the center of mass of the object to the center of the

TABLE I
LIMITS FOR MANIPULATOR JOINT VELOCITIES AND ACCELERATIONS

joint # Θ̇min (rad/s) Θ̇max (rad/s) Θ̈min (rad/s2 ) Θ̈max (rad/s2 )

1 −2 2 −12 12
4 −5 5 −80 80
6 −20 20 −100 100

TABLE II
PARAMETER VALUES FOR THE TWO-FINGERED GRASP SYSTEM

object mass m 0.049 kg
object dimensions 0.12 m × 0.09 m
object inertia I (about its CM) 2.78 × 10−4 kg·m2

angle between the horizontal plane α 0
gravity constant g 9.8 m/s2

gripper arm length L 0.17 m
spring location LS (as shown in Fig. 10) 0.05 m
spring load S −7 N
measured friction coefficient μ̂ 0.34
friction coefficient used in planning μ 0.16
radius of the contact patch a 0.0254 m
3R robot link 1 length 0.552 m
3R robot link 2 length 0.303 m
3R robot link 3 length 0.287 m

contact disk, the pressure distribution varies linearly along y′

and is constant along the orthogonal direction (see (29) in Ap-
pendix B for the expression of p2). As shown in Fig. 10, to
maintain a static grasp, p2 is more closer to the center of mass
and drops with increasing y′. This allows for force and moment
balance considering the gravity force on the object.

Let γ be the distance from the object center of mass to the
center of the finger contact patches. As shown in Appendix B, the
minimum spring force S needed to maintain the grasp increases
as γ increases, according to

S ≥ fgL

LS

(
4γ
a

− 1
)
. (21)

For a spring force less than this bound, the required pressure
p2 for force–moment balance becomes negative within finger
2’s contact patch, which is not physically realizable. Therefore,
moment balance cannot be achieved, and the object rotates and
falls out of the plane of motion. You can try a simple experiment
with a cell phone to see that a larger grip force is needed to hold
the phone horizontal as the pinching fingers move further from
the center of mass.

Based on the modeling above, Appendix B derives the de-
tailed forms of the limit surfaces describing the contacts at finger
1 and finger 2. The limit surfaces are based on ellipsoidal ap-
proximations to the elliptic integrals corresponding to the finger
contact forces and moments. The resulting closed-form expres-
sions are fTi Aifi = 1, where for finger 1 A1 = A(0) and for
finger 2 A2 = A(γ). The expression for A(γ) can be found in
(52) in Appendix B.

With the description of the contact limit surfaces as a function
of the configuration of the object in the hand, we apply the
dynamics and motion planning described in Sections V–VII to
experiments.
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Fig. 11. Repositioning example: showing trajectories found by the motion planner. The plot on the left shows the entire motion with a time interval between
frames of 60 ms. Plots on the right show the initial and final configurations, and give more details of motion during the sliding phase. Solid gray curves are the
object CM trajectories, red dots represent the finger contacts, and the brown lines represent the finger orientation. Thick black arrows show the directions of the
object motion. Thick black curves show the sliding regions. Thin red and green arrows are the x and y directions of the body frame B.

Fig. 12. Repositioning example: showing the trajectories of the object (red dashed curves) and the finger (blue solid curves) found by the motion planner to
reposition an object. Green shaded regions show the planned sliding phase. (Left) Finger contact center trajectories qf and object CM trajectories qo . Initial
relative position error is shown as the space between the dashed red line and the blue line, which is reduced to zero after the sliding motion. (Middle) Finger
velocities q̇f and object contact points velocities (points on the object that are coincident with the contact center) GT q̇o are shown to demonstrate relative
velocities at the contact. (Right) Finger accelerations q̈f and object contact point accelerations d

dt (G
T q̇o ) demonstrate relative accelerations at the contact.

IX. EXPERIMENT

We tested the motion planner discussed in Section VII with a
pinch–grasp introduced in Section VIII using the ERIN system
described in Section I-A.

We used the lightweight passive gripper rather than the Al-
legro hand for the higher achievable accelerations and better
contact force characterization as discussed in the beginning of
Section VIII. We used three joints of the 7-DOF WAM arm
(joints 1, 4, and 6) while keeping the other joints fixed to em-
ulate a 3R planar arm. Manipulator workspace, velocity, and
acceleration constraints in the root-finding problem were based
on joint, velocity, and motor properties given by the manufac-
turer as well as conservative estimates of the inertia matrix. The
values of manipulator velocity and acceleration constraints are
shown in Table I.

Given initial and goal relative configurations, the motion plan-
ner plans the hand trajectory and solves the joint trajectories
using inverse kinematics. The planned joint trajectories were
generated offline, and real-time control was used to follow the
trajectories specified by the planner. The motion control loop
used encoder feedback and ran at 500 Hz on a Linux PC with
an Intel Core i7-4770 CPU and 16 GB RAM. Motion was in a
horizontal plane (α = 0) to achieve more isotropic control au-
thority than would be the case in a vertical plane. The values
of the constants used in modeling and planning are summarized
in Table II.

A. One-Shot Planning and Execution

Before planning, the initial relative position rBf ,init was mea-
sured by the vision system. With the goal relative position rBf ,goal
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Fig. 13. Repositioning example: blue curves showing the planned joint positions, velocities, and accelerations of the manipulator calculated from the finger
trajectories shown in Fig. 12 by solving inverse kinematics. The green dashed lines are the joint velocity and acceleration limits corresponding to the values in
Table I. Joint position limits are not shown since the trajectories are far from the limits.

Fig. 14. Experiment result of one-shot planning showing the relative position
changes versus time. Red dashed curves show the reference relative position
rBf trajectories. Blue curves represent the actual relative position trajectories.
Green shaded regions indicate the planned sliding phase.

Fig. 15. Experiment result of one-shot planning, showing the finger contact
center trajectories. Green shaded regions indicate the planned sliding phase.
The mean absolute tracking errors are [1.02 mm, 2.56 mm, 0.296 ◦]T , and the
standard deviations are [1.04 mm, 2.75 mm, 0.27 ◦]T .

given by the user, the motion planner calculated the motion of the
robot to realize the repositioning satisfying all the constraints.

Figs. 11 and 12 show the motion planning result of a slid-
ing regrasp example. The initial relative position was measured
as rBf ,init = [−0.011 m,−0.022 m, 164◦]T , and the goal relative

position was given as rBf ,goal = [0, 0, 180◦]T . Fig. 13 shows the
planned joint trajectories of the 3R robot, which were calcu-
lated from the inverse kinematics applied to the finger position
trajectories in Fig. 12. The planned time periods for each phase
were T1 = 0.64 s, T2 = 0.29 s, and T3 = 1.33 s.

The planned motions were tested experimentally. The WAM
arm followed the preplanned joint trajectories using a PID-
based joint position controller. The object poses were obtained
from the vision system. To prevent overshoot during the slid-
ing motion, we chose an underestimated friction coefficient in
the motion planner. Experimental results of relative position
change are shown in Fig. 14. Finger position tracking results are
shown in Fig. 15, where the finger poses were calculated from
the recorded joint angles and the forward kinematics of the
system.

During the implementation, the finger moved relative to the
object along the desired direction and ended up with some un-
dershoot errors, which were more apparent in the y direction.
One reason for this undershoot is the intentionally underesti-
mated friction coefficient in the motion planner. Another reason
is the trajectory tracking error is larger in the y direction as
shown in Fig. 15. Since there is more error in the y direction
from the initial configuration, the planned motion has higher ac-
celerations in this direction, which increases the tracking error.
The final relative position errors could also have been caused
by modeling errors and uncertainties in measuring the initial
relative positions.

B. Iterative Planning and Execution

This section reports the results of iterative planning and exe-
cution for 3-DOF planar regrasping. Unlike the idealized 1-DOF
example in Section III, we have no theoretical convergence re-
sults for iterative in-hand regrasping for the 3-DOF case and all
possible sources of error. The motivation for iterative regrasping
(essentially discrete-time one-step deadbeat feedback control)
is the same, however.

In each experiment, we tested three iterations of motion plan-
ning and execution with the same goal. In each iteration, the
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Fig. 16. Experimental results of iterative planning and execution for one experiment consisting of three iterations. The plots show the planned and actual relative
configurations rBf (t). Each color represents one iteration. Triangles and circles show the initial and final points of each trajectory. The dashed lines are the planned
trajectories and the solid curves shows the experimental results. Plots on the left and right show the same result from different viewpoints.

Fig. 17. Iterative planning experiment corresponding to Fig. 16. Total times for iterations 0, 1, and 2 are 2.26 s, 1.6 s, and 1.95 s, respectively. Time intervals
between snapshots were manually chosen to show the motion of the system. A video of this experiment is shown in the attached media.

initial state was measured from the last state of the previous
iteration. The robot trajectories were planned automatically by
the motion planner based on the initial state and goal state. Then,
the robot followed the planned trajectories.

Results of the iterative planning are shown in Figs. 16 and
17. The first iteration corresponds to the example given in
Section IX-A. After each iteration, the relative position was
closer to the goal configuration. Once the object is near the
goal state, additional iterations did not decrease the error. In
cases where the error was close to the mean vision error of the
vision system (∼0.5 mm), additional iterations could actually
introduce more error.

C. Repeatability

To test the repeatability of the repositioning experiment, we
ran the previous three-iteration experiment ten times, making
a total of 30 motion plans and executions. At the beginning
of each three-iteration trial, the object was manually placed at

approximately the same initial configuration. Fig. 18 shows a
boxplot of the relative position changes. Fig. 19 shows a boxplot
of the planning time. Further iterations produce no statistically
significant improvement (or worsening) of the grasp.

Sources of error in achieving planned regrasps include vi-
sion errors (as mentioned above), error in following the planned
robot trajectory, and contact modeling errors (e.g., the Coulomb
friction approximation and the contact pressure distribution ap-
proximations). The mean absolute robot trajectory tracking er-
rors were [1.2 mm, 2.6 mm, 0.35 ◦]T , with standard deviations
[0.91 mm, 2.6 mm, 0.22 ◦]T , respectively. Errors induced by the
assumed form of the contact pressure distributions are likely
less meaningful for n-fingered grasps than for our 2-fingered
grasp, because the distances between the finger contacts play
a larger role in determining the shape of the grasp limit sur-
face than the detailed pressure distribution at single fingers.
While our finger/object contacts approximately obeyed a dry
Coulomb friction model, other finger/object contacts, particu-
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Fig. 18. Experiment results of ten trials, showing the changes of relative positions. Each color represents one iteration. The red lines within the boxes show the
mean values, edges of the boxes are the 25th and 75th percentiles, and whiskers extend to the most extreme data points.

Fig. 19. Planning time of 10 trials. Each color represents one iteration. Red
lines within the boxes show the mean values, edges of the boxes are the 25th
and 75th percentiles, and whiskers extend to the most extreme data points.

larly involving soft, hysteretic materials such as rubber, may
require a different contact model.

The goal configuration was the same in all 30 individual
planning and execution steps, but the initial configurations var-
ied considerably. The results of the reported experiments are in
line with what we observed with other 3-DOF 2-fingered lam-
inar regrasps we tried, and point to a typical final error on the
order of a few millimeters in linear position and a few degrees
in orientation. Achieving a smaller final error would require im-
provements in the vision system, trajectory tracking, or contact
modeling.

X. CONCLUSION

In this paper, we presented a general framework for planning
dynamic in-hand sliding manipulation motions and analyzed the
dynamics for n-fingered grasps using soft-finger limit surface
models. We proposed a simple model of the contact pressure
distribution and constructed the frictional limit surfaces based on
it. The framework was applied to the problem of in-hand sliding
manipulation with a two-fingered grasp in the horizontal plane.
Our motion planner was able to automatically find dynamic
hand motions to achieve a desired sliding regrasp based on the
grasp contact model. Experimental implementations of iterative
planning and execution reduced the relative position error and
demonstrated the feasibility of the overall approach.

Future work includes problems 5 and 6 from Section I-A: 5)
real-time feedback control of finger motions and normal forces

during the regrasp and 6) iterative improvement of the finger
contact models using data from experiments. Problem 5 will
likely require better fingertip force sensors and higher band-
width fingertip force control than is currently available to us.
Also, practical estimates are needed on the ultimate error after
iterative regrasping, based on reasonable models of trajectory
tracking capabilities and contact modeling uncertainties. For
example, Theorem 1, which promises zero ultimate error for
an idealized 1-DOF regrasping problem, is based on perfect
trajectory tracking, perfect sensing, and a constant (though un-
known) friction coefficient. Each of these assumptions should
be weakened to better understand the importance of each fac-
tor. Our experiments indicate a practical ultimate error of a few
millimeters.

This paper studied 3-DOF planar regrasping using a
2-fingered grasp on parallel surfaces. The method can easily
be extended to n-fingered grasps on parallel surfaces by mod-
ifying the grasp pressure distribution details in Section VIII.
Extensions to n-fingered regrasping on nonparallel surfaces re-
quires adding compliance (or contact normal force control) at
the individual fingers to allow finger compliance in the normal
direction, which is a topic we are currently investigating.

APPENDIX A
PROOF OF THEOREM 1

Proof: Without loss of generality, we prove the theorem
for the case dgoal > 0, as indicated in Fig. 4. With friction
uncertainty included, the friction coefficient is μ ∈ [μ0(1 −
ε), μ0(1 + ε)]. The object acceleration during sliding there-
fore satisfies ao,actual ∈ [ao − aε, ao + aε ], where ao = μ0fN
and aε = μ0fN ε.

To understand these conditions, we first discuss sliding dis-
tance error caused by the friction uncertainty. For the case when
the friction coefficient is larger than the estimate, the object will
undershoot dgoal. The maximum sliding distance error caused
by the underestimated friction coefficient is the area of the dark
orange triangle d2 in Fig. 4, and

d2 =
(a+ af )aεdgoal

(af − ao)(a+ ao + aε)
. (22)
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For the case where the actual friction coefficient is smaller
than the estimate, the object will slide more than dgoal. The
maximum sliding distance error is the area of the dark green
triangle d3 in Fig. 4, which can be expressed as

d3 =
(a+ af )aεdgoal

(af − ao)(a+ ao − aε)
. (23)

From (22) and (23), the maximum sliding distance errors
satisfy d2 < d3 for any af > ao regardless of what af is chosen.
Therefore, we focus on the conditions on d3 to ensure that the
sliding distance errors decrease within the given rate.

From (23), when af > ao , and with given ao and aε , as
af increases to infinity d3 converges to its minimum value of
aε dgoal

a+ao−aε . Although it initially seems counterintuitive, increasing
the finger acceleration af decreases the overshoot error because
the phase durations become smaller [see (5)]. To prevent the
object from sliding too far, the condition d3 < dgoal should be
ensured. Therefore, we have a lower bound for a:

aε
a+ ao − aε

< 1 ⇒ a > μ0fN (2ε− 1).

An upper bound on a ensures that the object sticks in the be-
ginning and end modes when the friction is overestimated, and
is expressed by a < μ0fN (1 − ε). To ensure a feasible a exists,
the upper and lower bounds of a should satisfy

μ0fN (2ε− 1) < μ0fN (1 − ε) ⇒ ε < 2/3.

Note that the decrease of the net sliding error from one iter-
ation to the next is never better than aε

a+ao−aε = μ0 fN ε
a+μ0 fN (1−ε) .

This gives the lower bound on the feasible convergence rate ρ.
The range of the actual sliding distance can be written as

dactual ∈ [dgoal − d2 , dgoal + d3 ], and the error in sliding distance
as e = dgoal − dactual ∈ [d2 ,−d3 ].

At each iteration, the error ek from the previous iteration
becomes new (dgoal)k and is used to replan a sliding motion:

(dgoal)k+1 = (dgoal)k − (dactual)k ∈ [(d2)k , (−d3)k ]. (24)

To have the error in the net sliding distance converge to zero
at least as fast as ρk , we need to choose a maximum finger
acceleration af such that ek ≤ ρ(dgoal)k . For the case of an
overestimated friction coefficient, (3) and (22) show that when
af ≥ μ0 fN [μ0 fN (ε−1)ρ−a(ε+ρ)]

μ0 fN (ερ−ρ+ε)−aρ we have

|(d2)k |
|(dgoal)k | ≤

ao + a− aε
ao + a+ aε

ρ < ρ. (25)

Similarly for the case of an underestimated friction coefficient,
(3) and (23) show that when af ≥ μ0 fN [μ0 fN (ε−1)ρ−a(ε+ρ)]

μ0 fN (ερ−ρ+ε)−aρ we
have

|(d3)k |
|(dgoal)k | ≤ ρ. (26)

From (22) and (23), we have d2 < d3 for any af > ao . There-
fore, we only need to satisfy the af constraint that leads to (25),

which yields af ≥ μ0 fN [μ0 fN (ε−1)ρ−a(ε+ρ)]
μ0 fN (ερ−ρ+ε)−aρ .

Combining (24)–(26) gives
∣∣∣ (dgoal)k + 1

(dgoal)k

∣∣∣ < ρ, which demon-

strates that |(dgoal)k | converges exponentially to zero as the
number of iterations k increases. �

Fig. 20. Contact pressure distribution of the two-fingered pinch grasp.

APPENDIX B
DETAILS OF LIMIT SURFACE MODELING

We introduce a local finger frame F′
i at the center of the

finger, and since the frames F′
1 and F′

2 are coincident in this
system, we use F′ to represent the frame as shown in Figs. 10
and 20. The y′-axis is along the direction from the center of the
object to the center of the finger. The distance from the CM of
the object to the center of the fingers is γ =

∣∣ [xrf , yrf ]T
∣∣.

The contact pressures p1 and p2 over the patches are a func-
tion of the position on the patch. We have constraints on the
pressure distributions to keep the object planar when subject to
the spring force, but the exact shape of the pressure distributions
is unknown. We chose to approximate the pressure distributions
as either constant or linearly varying distributions, as these are
the lowest order models that can satisfy the force–moment bal-
ance constraints that ensure the planar motion of the object. We
assume that modeling errors leading to execution error can be
accommodated by our iterative replanning approach.

In particular, the pressure distribution p1 is assumed to be
constant over the contact patch, while p2 must vary over the
contact patch to achieve balance of forces and moments that
would otherwise move the object out of the plane. We assume
p2 varies linearly in the y′-direction, as shown in Figs. 10 and
20. The shape of the contact patches are assumed constant and
independent of the contact pressures.

A. Mechanics of the System

1) Finger Pressure Distributions: Since the contact pressure
of finger 1 is evenly distributed, the total normal force of finger
1 fN 1 is a function of the spring force S,

fN 1 =
∫
R1

p1(r) dA =
LS
L
S (27)

where R1 is the circular contact region and dA is the infinites-
imally small area located at r = [xr , yr ]T with respect to the
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local frame F′ as shown in Fig. 20. From (27), we have

p1(r) =

{
LS S
πa2L for |r| ≤ a

0 for |r| > a.
(28)

For finger 2, the contact pressure is assumed to be symmetri-
cal about the y′-axis. Since we assume the shape of the pressure
distribution function changes linearly in the y′-direction, as ex-
pressed by

p2(r) =

{
C2 + kyr for |r| ≤ a

0 for |r| > a
(29)

where k is the change in pressure dp/dyr , andC2 is the constant
term of p2 . The total normal force of finger 2 is

fN 2 =
∫
R2

p2(r) dA =
∫ a

−a

∫ √
a2 −y 2

r

−
√
a2 −y 2

r

(C2 + kyr )dxrdyr

= πa2C2 . (30)

Since the motion of the system is in the xy plane of W , the
total force in the vertical direction and moments about the object
CM must be balanced. We denote the total contact moments
about the CM of the object as mti . Therefore, we have

mt1 =
∫
R1

[ro × ẑ′]p1(r) dA =
LSSγ

L
(31)

where ro is the vector pointing from the object center O to the
infinitesimally small area dA, ro = [xr , yr + γ]T as shown in
Fig. 20, and ẑ′ is the unit vector in +z′-direction. For finger 2,
we have

mt2 =
∫
R2

[ro × ẑ′]p2(r) dA =
πa2

4
(a2k + 4C2γ). (32)

The force and moment balance equations of the object are

fN 1 + fN 2 + fg = 0 (33)

mt1 +mt2 = 0. (34)

Substituting (27), (30), (31), and (32) into (33) and (34) gives

C2 = − 1
πa2

(
fg +

LSS

L

)
(35)

k =
4fgγ
πa4 . (36)

Substituting (35) into (30) gives

fN 2 = −
(
fg +

LSS

L

)
. (37)

The finger contacts can only apply forces into the object,
which means that for finger 2 the contact pressure at any con-
tact point must be nonnegative, i.e., ∀r ∈ R2 : p2(r) ≥ 0. From
(36), we have k ≤ 0. Since γ ≥ 0 and fg ≤ 0, the minimum
contact pressure of finger 2 is the pressure at point B. To en-
sure feasible contact pressures, p2(rB ) ≥ 0 should be satisfied,
where rB = [0, a]T . By substituting (29), (35), and (36) into

Fig. 21. Close up view of finger 2 pressure distribution.

the inequality p2(rB ) ≥ 0, we can solve the maximum distance
between the finger center and the object center as

γ ≤ a

4

(
1 +

LSS

fgL

)
. (38)

When γ exceeds the limit, the contacts break and the object falls
out of the grasp since the contacts cannot supply pulling forces.
To maintain contacts in this situation, the spring force S should
be increased.

B. Modeling of Limit Surfaces

1) Constructing Limit Surface Numerically: With the ex-
pressions for the finger contact pressure distributions given
above, we calculate the frictional forces and moments caused by
the contacts for different sliding directions. The set of possible
relative velocities at a contact can be parameterized using the
center of rotation (COR) formulation as in [25]. The finger’s
instantaneous COR is defined by two variables: the distance to
the center of the finger lc and the angle from the y′-axis ψ, as
shown in Fig. 21. The relative sliding velocity vector at the in-
finitesimal area dA is v. The tangential frictional force ft acts in
the opposite direction of v. The total tangential frictional force
of each contact is calculated by integrating shear forces over the
entire contact patch Ri as

ft,i =
[
fx,i
fy ,i

]
= −

∫
Ri

μv̂pi(r)dA (39)

and the total frictional moment about the z′-axis is

mz,i = −
∫
Ri

μ[r × v̂]pi(r)dA (40)

where v̂ is the unit vector in the direction of v:

v̂ =
1
Λ

[
lc cosψ − yr
lc sinψ + xr

]
(41)
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Fig. 22. Numerically integrated and approximated limit surfaces of finger 2.
The axes of the friction force space are aligned with the local frame F′ and
normalized. Blue dots are the numerical integration results, green ellipsoids
show the approximated limit surfaces.

Fig. 23. Numerically integrated and approximated limit surfaces when the
COR is moving along the y ′-axis, shown in the fxmz -plane. Blue dots are
numerical integration results, green ellipsoids show the approximated limit
surfaces.

where Λ =
√
l2c − 2yr lc cosψ + 2xlc sinψ + x2

r + y2
r . Substi-

tuting (41) into (39) and (40), we have

ft,i =
∫ a

−a

∫ √
a2 −y 2

r

−
√
a2 −y 2

r

−μpi(r)
Λ

[
lc cosψ − yr
lc sinψ + xr

]
dxrdyr

(42)

mz,i =
∫ a

−a

∫ √
a2 −y 2

r

−
√
a2 −y 2

r

−μΦpi(r)
Λ

dxrdyr (43)

where Φ = lcxr sinψ − lcyr cosψ + x2
r + y2

r .
The frictional forces and moments of finger 1 can be consid-

ered as a special case of finger 2, where γ = 0 and both p1 and
p2 are constant. Therefore, we only analyze the limit surface for
finger 2.

Equations (42) and (43) do not have closed-form solutions
since they are elliptic integrals. Equations (35) and (36) can be
numerically integrated to construct the limit surfaces. Figs. 22
and 23 show the results of numerical integration of limit

surfaces of finger 2 with four different values of γ. Each blue
dot represents an integration result of a COR position on the
x′y′-plane (a pair value of lc and ψ). Substituting LS = 0.05
m, L = 0.17 m, fg = − 0.5 N, S = − 7 N, a = 0.0254 m into
(38), we find the maximum γ is γmax ≈ 1.279 a.

2) Approximation of the Limit Surfaces: Since the shape of
LS1 is a special case of LS2 when γ = 0, in this section we
focus on the derivation of the expression for the approximated
LS2 . The idea is to fit an ellipsoid to the numerical integrals
in the local frame F′ that deforms as γ increases. This LS
approximation is then expressed in the local frame F+ , which
is used in the dynamics derived in Section V.

Observation 1: From Figs. 22 and 23, we observe that as the
distance γ from the object center to the finger center increases,
the mz components of points on the limit surface increase or
decrease by a factor linear in both γ and fx .

From (37), the total normal force is not affected by γ, which
means that the maximum linear frictional force μfN2 will be the
same as long as γ ≤ γmax, and the projection of the limit surfaces
to the fxfy -plane will be the same circle centered at the origin
with radius μfN2 . Equation (36) shows that the contact pressure
distribution is determined by γ, which also affects the maximum
frictional moment mz,2 at each COR. Therefore as γ changes,
the shape of the limit surfaces changes in the mz -direction.

Based on observation 1, we use deformed ellipsoids
to approximate the limit surfaces. We denote fF

′
e =

[fx,e , fy ,e ,mz,e ]T as an arbitrary vector on an ellipsoid cen-
tered at the origin of the local finger frame F′, and fF

′
=

[fx, fy ,mz ]T as an arbitrary vector on the corresponding ap-
proximated limit surface. The ellipsoid is represented by

(fF
′

e )T AefF
′

e = 1 (44)

where the matrix Ae ∈ R3×3 is a symmetric positive-definite
matrix that determines the shape of the ellipsoid. In the gen-
eral ellipsoid definition, Ae = diag(s−2

1 , s−2
2 , s−2

3 ) where s1 ,
s2 , and s3 represent the lengths of the semiprincipal axes. We
again assume isotropic dry friction so the maximum tangential
force the contact can resist is s1 = s2 = μ|fNi

|. The maximum
moment along the normal direction is s3 = caμ|fNi

|, where a
is the radius of the contact patch and c is a constant from numer-
ical integration. Here, we take c = 0.63 based on the findings in
[25].

Since the limit surface is approximated by the ellipsoid de-
formed linearly in the mz -direction proportional to fx , we have

mz = mz,e + κ(γ)fx,e (45)

where κ(γ) is a variable that determines the linear mapping.
To deriveκ(γ), we choose a critical point fF

′
∗ = [f ∗x , f

∗
y ,m

∗
z ]
T

in the frame F′. Let f ∗x = μfN2 , f
∗
y = 0 so the projection of fF

′
∗

in the fxfy -plane is at the edge of the limit circle. At this point,
from the ellipsoid definition, we have m∗

z ,e = 0. From (45), we
find

κ(γ) = m∗
z /f

∗
x,e . (46)
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We calculate m∗
z from (36) and (43) by substituting ψ = 0 and

lc = −∞

m∗
z = −μ

∫ a

−a

∫ √
a2 −y 2

r

−
√
a2 −y 2

r

yr (C2 + kyr )dxrdyr

= −μπa
4k

4
= −μfgγ. (47)

Since the ellipsoid is only deformed in the mz -direction, we
have f ∗x,e = f ∗x = μfN2 . Substituting this expression and (47)
into (46), we have

κ(γ) =
m∗
z

f ∗x
= −fgγ

fN2

. (48)

The transformation from the ellipsoid to the limit surface is
given by (

fF
′
)T

=
(
fF

′
e

)T
D (49)

where D is an affine transformation matrix that deforms the
ellipsoid as

D =

⎡
⎣1 0 κ

0 1 0
0 0 1

⎤
⎦ .

From (44) and (49), we have (fF
′
)T D−1AeD−T fF

′
= 1. The

expression for all the points on the limit surface can be written
as (

fF
′
)T

Am fF
′
= 1 (50)

where

Am = D−1AeD−T =

⎡
⎣ (κ2/s2

3 + s−2
1 ) 0 −κ/s2

3
0 s−2

2 0
−κ/s2

3 0 s−2
3

⎤
⎦ .

To describe the frictional limit surface in the frame F+ , we
have

fT =
(
fF

′
)T

RF′F+
(51)

where RF′F+
is a transformation matrix that transfers the ref-

erence frame of linear force vectors from F′ to F+ and

RF′F+
=

⎡
⎣ sinφ − cosφ 0

cosφ sinφ 0
0 0 1

⎤
⎦

where φ = tan−1( yr f 2
xr f 2

), as shown in Fig. 6. From (50) and (51),

we write the equation of the limit surface in frame F+ as

fT Af = 1 (52)

where A = (RF′F+
)−1Am (RF′F+

)−T .
Comparisons showing the good agreement between the ap-

proximated frictional limit surface and the numerically inte-
grated points are shown in Figs. 22 and 23.
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