
Distributed Environmental Monitoring with Finite
Element Robots

Matthew L. Elwin, Member, IEEE, Randy A. Freeman, Member, IEEE, and Kevin M. Lynch, Fellow, IEEE

Abstract—We introduce a distributed finite element algorithm
that allows swarms of mobile robots to persistently monitor
environmental quantities such as temperature or salinity. The
robots deploy themselves into the environment, covering the
domain and dividing it into non-overlapping regions. Each
robot estimates the environment over its own region using
local measurements and communication with nearby robots. The
algorithm ensures that each robot’s estimate constitutes a piece
of a global estimate that spans the entire domain, fuses the whole
swarm’s measurements, and accounts for the spatial correlation
between measurement and estimation locations. By incorporating
spatial correlation without requiring the transmission of mea-
surements or measurement locations, the algorithm decouples
its communication requirements from the spatial statistics of
the environment and enables robots with fixed capabilities to
monitor environments with different spatial correlation lengths.
Analysis and simulation demonstrate that, as the number of
robots increases, the memory and communication requirements
of each individual robot decrease until reaching a minimum,
after which the resolution of the environmental model increases.
Additional robots, therefore, add computational resources to the
swarm rather than introducing extra computational burdens.

Index Terms—Distributed Robot Systems, Sensor Networks,
Networked Robots, Environment Monitoring and Management

I. INTRODUCTION

STUDYING environmental fields such as temperature,
chemical concentration, or radiation intensity tradition-

ally requires manually deploying sensors, collecting data at
a central computer, and estimating the field from sparse,
irregular measurements. Such methods have been studied ex-
tensively, for example in oceanography [1], [2]. Using mobile
robots to collect these measurements, rather than manually
deployed fixed-location sensors, provides more relevant data
to scientists, enabling them to create detailed and accurate
environmental models.

When estimating an environment, typically a central com-
puter must store all measurements and environmental model
states in its memory; therefore, its memory use increases with
the number of measurements and model states. To obtain
the measurements, the central computer receives transmissions
from the robots. As the number of robots and measurements
grows, however, limited communication bandwidth reduces

This work is supported by the Office of Naval Research, Grant
N00014-13-1-0331. The authors are with the Center for Robotics and
Biosystems, the Department of Mechanical Engineering (Elwin and
Lynch), the Northwestern Institute on Complex Systems (Freeman
and Lynch), and the Department of Electrical Engineering and
Computer Science (Freeman), Northwestern University, Evanston,
IL 60208 USA. Emails: elwin@northwestern.edu,
freeman@eecs.northwestern.edu,
kmlynch@northwestern.edu.

the feasibility of this centralized communication scheme,
especially when monitoring remote environments such as outer
space, the ocean, and underground.

Our environmental monitoring approach is based on a
distributed implementation of a finite element method (FEM)
(see [3], [4]). We focus on reducing the memory and com-
munication requirements of individual robots, especially as
the number of robots and their density in the environment
(and therefore the density of the measurements) increases. In
particular, we evaluate how much memory each robot needs
to store the estimate, how much data the swarm transmits,
and the algorithm’s communication topology requirements. All
three of these criteria directly influence the cost and power
consumption of the robots.

Compared to related work, our method significantly reduces
the memory consumption and communication requirements
of the robots, especially as their density in the environ-
ment (relative to a characteristic length scale) increases. Our
algorithm also provides additional flexibility over existing
methods: its communication requirements remain independent
of intrinsic characteristics of the environment, allowing the
same communication hardware to be used in multiple settings.

To reduce memory requirements, the robots partition the do-
main into non-overlapping subdomains. Each robot estimates
the environment over its own partition, storing only a piece of
the full environmental model; therefore, collectively the robots
can estimate environments whose models do not fit inside
a single robot’s memory. Initially, as the number of robots
increases, each individual’s memory use decreases because it
stores a diminishing share of the full environmental estimate.
Eventually, each robot stores a minimum number of states,
determined by the subdomain geometry. After reaching this
minimum, adding more robots increases the resolution of the
environmental model without increasing the memory use of
the individual robots.

To fuse all of the swarm’s measurements into their esti-
mates, the robots execute a distributed algorithm based on
the variational inverse method (VIM) [5]–[12]. This algo-
rithm generates estimates by using FEM to minimize a cost
functional that penalizes the estimate’s non-smoothness and
inconsistency with the measurements. FEM transforms this
continuous infinite-dimensional optimization into a discrete
finite-dimensional optimization and guarantees convergence.

In our distributed version of VIM, the robots determine
their own FEM meshes and solve for their local environmental
states using the distributed alternating direction method of
multipliers (ADMM) [13], [14]. Despite communicating only
with its Voronoi neighbors, each robot’s estimate converges to

a piece of the global VIM solution.
Assuming that the environment is a spatial random field with

known mean and covariance functions (a common assumption
in environmental monitoring: see e.g., [1], [2]) the VIM
estimate, under certain technical conditions, matches the best
linear unbiased estimate (BLUE) of the environment [2], [6],
[15], [16]. The BLUE results from taking a linear combination
of the measurements, weighted to minimize the mean-squared
estimation error. Thus, by matching the global VIM solution
within its region, each robot’s estimate implicitly incorporates
every measurement from the swarm while, due to the FEM ap-
proach, its memory and communication requirements remain
approximately independent of the number of measurements.

Generally, the spatial correlation function of the random
environmental field determines the relative importance of
measurements when estimating the field at a given location:
measurements whose locations are highly correlated with the
estimation location are more important than those with little
correlation. For non-increasing correlation functions, the cor-
relation length determines a distance beyond which measure-
ments no longer meaningfully contribute to an estimate. Our
algorithm’s communication requirements remain independent
of the correlation length despite incorporating all relevant
measurements into the estimate. This decoupling enhances the
applicability of the algorithm, enabling the same robots to
measure fields with vastly different spatial correlation lengths.

Overall, distributed coordination of multiple robots monitor-
ing an environment consists of four tasks: deployment, patrol,
estimation, and querying (see Figure 1). During deployment,
the robots move to cover the environment and partition it
into subdomains. Within each subdomain, the robots form
local finite element meshes. Next, the robots simultaneously
patrol and estimate the environment. To perform the patrol
task, the robots move according to a control law and gather
measurements. In the estimation task the robots assemble local
FEM equations and solve them using distributed ADMM.
Estimation provides an approximation of the field value and
estimation uncertainty. To track time-varying fields, the esti-
mation task is periodically restarted with new measurements
from the patrol task. At any time, the robots may receive a
query, which allows them to provide the estimate to a user.
The robots may periodically redeploy to obtain coverage with
higher densities in areas of greater importance or uncertainty.

This paper introduces a distributed environmental estimation
algorithm focusing on the deployment and estimation tasks.
In particular, we examine the estimation algorithm’s memory
and communication requirements, analyze its desirable scaling
properties, and demonstrate its reduced requirements relative
to prior methods. The patrol and query tasks are not discussed
here; see [17]. The decision on when to patrol versus when to
redeploy is also not covered in this work. The deployment task,
however, can be informed by an uncertainty distribution, which
can be obtained using a slight modification to the estimation
algorithm presented here; see [17] and Appendix A.

A. Related Work
In some decentralized environmental monitoring ap-

proaches, every robot estimates the whole environment. Typ-

Fig. 1. Overview of tasks required for environmental monitoring. During
deployment, the robots move to partition the domain and prepare the finite
element mesh. The robots then patrol, using a control law to move and gather
measurements. These measurements are used to estimate the environment.
Periodically, the robots restart the estimation process with new measurements,
allowing them to respond to time-varying fields. The robots can also redeploy
to gain better coverage of the environment. If a robot receives a query, the
robot responds and continues with its patrol and estimation tasks. Dashed
boxes and arrows indicate topics not explored in this paper.

ically, the robots estimate this global information using con-
sensus algorithms, such as average consensus estimators [18]–
[21]. For instance in [22], the environment is represented as
a linear combination of basis functions whose coefficients
are estimated using a distributed Kalman filter [23], [24].
The approach of [25] represents the environment as samples
from probability distributions and uses consensus algorithms
to determine the estimate. These consensus-based methods
require all robots to store and agree upon the full environ-
ment state; therefore, their memory usage and communication
requirements increase with the complexity of the environment.

In contrast, methods that use distributed environmental
representations do not require every robot to store the full
environmental estimate. For example, the method of [26] uses
FEM and a Kalman filter to estimate an environment. Unlike
our method, this approach is not fully distributed because it
assumes that the robots know their pre-assigned subregions
and the FEM mesh beforehand. Additionally, the method
requires knowledge of an accurate partial differential equation
(PDE) model for the environment, which may be unavailable.

Conceptually, both VIM and [26] solve a PDE to determine
an environmental estimate. However, in VIM, the PDE model
itself incorporates the measurements and measurement loca-
tions, enabling it to directly account for the spatial statistics of
the environment. The PDE used by VIM can include physics-
based models in addition to the spatial statistics: see [27].

In [28], the robots use local interpolation rules to estimate
the environment in their own regions. The distributed Kriged
Kalman filter of [29] uses average consensus estimators and
distributed Jacobi over-relaxation to estimate the environ-
ment.1 Like our method, these algorithms require less com-
munication and memory than consensus-based approaches.
However, unlike our approach, both [28] and [29] require the

1The environmental representation in [29] has consensus-based and dis-
tributed components; for comparison purposes we ignore the consensus-based
aspect of the environment representation and the consensus-based part of the
algorithm.

robots to communicate with all other robots within a radius
determined by the environment’s spatial correlation length.
The communication requirements of these algorithms also
increase with increasing density of the robots.

The work of [30] studies a different estimation problem than
ours: tracking and searching for multiple targets. However, the
robots use Voronoi-based control algorithms and a distributed
Probability Hypothesis Density (PHD) filter to maintain esti-
mates in local Voronoi cells that match a centralized solution.

Although this paper focuses on estimation, designing control
laws to efficiently collect measurements is also an important
task for environmental monitoring. The method of [31] intro-
duces rapidly exploring random cycles, which create persistent
trajectories that robots use to estimate the environment. The
ergodic exploration methods of [32]–[34] use an information
density map to allow robots to spend more time in areas
of high information while still exploring areas with low
information. In [35], robotic ocean gliders travel along parame-
terized paths to collect better information. The control strategy
of [36] balances adherence to a trajectory and gathering better
information along closed paths.

To generate an estimate, our method uses the over-relaxed
pre-conditioned distributed ADMM method of [14] to solve
the FEM problem in a distributed manner. Distributed ADMM
(see e.g., [13]) is an iterative method that requires three steps:
a primal update, a dual update, and a Lagrange multiplier
update. The primal and Lagrange multiplier updates are per-
formed locally, while the dual update requires communication.

Theoretically, we can use any distributed optimization
method to solve the FEM problem. The algorithm choice, how-
ever, significantly affects performance, particularly the total
amount of communication needed. We use ADMM because it
has been shown to converge in fewer iterations than other first-
order methods such as distributed gradient descent [37], it does
not require the communication of individual stiffness matrix
rows needed by Jacobi over-relaxation [38], and it does not
require any global communication steps needed by methods
such as distributed conjugate gradient [39], the massively
parallel method of [40], or a parallel skyline solver [41].

B. Contribution Summary

We introduce a new distributed algorithm, the distributed
variational inverse method (DVIM), for estimating environ-
ments from sparse measurements. Our algorithm distributes
the environmental representation across the swarm, lowering
the communication and memory requirements of the individual
robots. Our approach is unique because it maintains an esti-
mate that accounts for the spatial correlation between mea-
surements without requiring direct communication between
the robots storing the relevant measurements. This feature
relaxes an important communication topology requirement and
reduces the memory used by each robot, especially as the
density of the robots increases. Additionally, our deployment
method ensures that the robots create a properly constructed
and well-conditioned FEM mesh in a distributed manner.

This work significantly expands upon our preliminary work
in [42]. In contrast to [42], we explicitly consider how the

robots are deployed and use their deployment to improve
the conditioning (and therefore the convergence speed) of
the estimation. We also explicitly quantify the memory and
communication requirements of this algorithm and contrast
these properties with existing methods. Our expanded analysis
and numerical simulations provide evidence of the efficacy of
our algorithm in reducing the memory and communication
requirements for environmental estimation without sacrificing
estimation fidelity relative to a centrally computed solution.

Paper Structure: Section II formulates the environmen-
tal estimation problem in a centralized setting. Section III
describes the decentralized deployment process. Section IV
describes the distributed field estimation method. Section V
analyzes the performance of our method and compares it to
previous work. Section VI presents agent-based Monte-Carlo
simulations, which validate our algorithm.

II. CENTRALIZED PROBLEM

A. Environment Model

Table I summarizes the notation used in this section. We
model the environment φ : Ω → R as a spatial random
field over the domain Ω ⊂ R2. The field has zero mean and
covariance function

E[φ(x1)φ(x2)] = C(x1, x2) = γR(x1, x2), (1)

where E[·] is the expected value, γ ∈ R is the background
variance and R(x1, x2) is the spatial correlation function, with
x1, x2 ∈ Ω. Usually, spatial correlation depends only on the
distance between points, so we let R(x1, x2) = R(‖x1−x2‖),
where ‖ · ‖ denotes the Euclidean norm.

We consider n robots, each taking a measurement zi ∈ R
at location Xi. The measurement vector z ∈ Rn and mea-
surement location matrix X ∈ Rn×2 contain the individual
measurements and their locations, respectively.

Remark 1. To simplify our presentation, we have made
some assumptions that can be relaxed. Our method handles
fields with nonzero mean (by treating the mean as the best
estimate of the field in the absence of measurements) and
time variation (by incorporating a time-dependent term into
the covariance function and repeatedly running the estimation
process) (see [17]). Multiple measurements per robot can be
allowed with minimal modification (see [17]). Much of this
work extends to 3-D, with the exception the edge expansion
algorithm used to improve convergence (see Section III-B).

B. Sensor Model

The measurement model for an individual robot is

zi = Hiφ+ vi, (2)

where Hi is a functional that evaluates φ at measurement
position i (i.e., Hiφ = φ(Xi)) and vi ∼ N(0, εi) is zero-mean
Gaussian noise with variance εi.

The measurements for the whole swarm are modeled as

z = Hφ+ v, (3)

TABLE I
SYMBOL DEFINITIONS FOR SECTION II

Symbol Description
Ω ⊂ R2 Environmental domain
x ∈ Ω A position within the domain Ω

φ(x) ∈ R The actual field value at position x
γ ∈ R Background variance

R(x1, x2) ∈ R Spatial correlation function
C(x1, x2) ∈ R Spatial covariance function

n The number of robots
z ∈ Rn Measurement vector

X ∈ Rn×2 Measurement positions
ε ∈ Rn×n Sensor covariance matrix (diagonal)
v ∼ N(0, ε) Sensor noise: Gaussian with covariance ε
Hφ ∈ Rn Field evaluated at the measurement locations
J [φ] ∈ R Cost functional used for estimation
µ ∈ Rn Measurement weights in the cost functional
f(φ) ∈ R Smoothness norm used in the cost functional
L ∈ R Spatial correlation length
e(x) ∈ R Estimation error at position x
φ̂(x) ∈ R Estimate of the field at position x
K1(·) First modified Bessel function of the second kind
m Number of shape functions per element

w(x) ∈ Rm Shape function vector
M Total number of nodes in the FEM mesh

qe ∈ Rm Local node vector for element e
q ∈ RM Global node vector

Be ∈ Rm×M Gather matrix for element e
Ke ∈ Rm×m Local stiffness matrix for element e
K ∈ RM×M Global stiffness matrix
ge ∈ Rm Local load vector for element e
g ∈ RM Global load vector

E[·] Expected value
N The number of elements in the FEM mesh
[·]i Vector element i
[·]ij Matrix element (i, j)

where H is a functional that evaluates φ at the measure-
ment positions (i.e., Hφ =

[
φ(X1) · · · φ(Xn)

]T
) and

v ∼ N(0, ε) is zero-mean Gaussian noise with a diagonal
covariance matrix ε ∈ Rn×n. The diagonal components of ε
are the individual sensor variances εi. The sensor noise and
field value are uncorrelated (i.e., E[φ(x)v] = 0).

C. Variational Inverse Method

The variational inverse method (VIM) is an interpolation
technique closely related to smoothing splines [2], [15], [16].
It generates an environmental estimate by minimizing a cost
functional penalizing the estimate’s non-smoothness and its
inconsistency with the measurements [6], [7], [9]–[11].

The cost functional to minimize is

J [φ] = f(φ)2 +

n∑
i=1

µi(φ(Xi)− zi)2, (4)

where µi ∈ R is the weight of the i-th measurement (noisier
measurements have lower weights) and f(φ) is a norm used
to measure non-smoothness. The vector µ ∈ Rn stacks all the
measurement weights.

The spatial coordinates of the two-dimensional domain are
denoted x = ([x]1, [x]2) ∈ Ω (indexing into vectors and

matrices is denoted with [·]i and [·]ij , respectively). We use
the non-smoothness measure from [6], [9]:

f(φ)2 =

∫
Ω

((
∂2φ

∂[x]21

)2

+

(
∂2φ

∂[x]22

)2

+ 2

(
∂2φ

∂[x]1∂[x]2

)2

+
2

L2

((
∂φ

∂[x]1

)2

+

(
∂φ

∂[x]2

)2
)

+
1

L4
φ2

)
dΩ. (5)

Here, L is the correlation length, a distance scaling parameter
that establishes the decay rate of the covariance between two
positions as a function of the distance between them.

Remark 2. The summation in Equation (4) penalizes the
deviation of the estimates from the measurements and the norm
f(φ) penalizes non-smoothness of the estimate. Technical
restrictions on the choice of norm are discussed in [15]. A
suitable norm for three dimensions is discussed in [5], [8].

Remark 3. The term φ2 in f(φ)2 penalizes the magnitude
of the field, which works for fields with zero mean. When
the mean is nonzero, subtracting it from the measurements
in Equation (4) approximates the anomaly field. The actual
field is then recovered from the anomaly field (see [9], [17]).

Estimate Quality: We evaluate estimate quality by using the
mean-squared error at each estimate location:

e(x) = E

[(
φ(x)− φ̂(x)

)2
]
, (6)

where φ̂(x) is the estimate of φ(x).

D. Best Linear Unbiased Estimator

The best linear unbiased estimator (BLUE) generates es-
timates using a weighted sum of the measurements, with
spatially-dependent weights that minimize the mean-squared
error at every location. VIM and BLUE are equivalent under
certain circumstances (see [2], [6], [15], [16] and Appendix A).

Essentially, choosing the norm f(φ) in Equation (4) de-
termines the spatial correlation function R(x1, x2) in Equa-
tion (1) used to generate the equivalent BLUE estimate. By
choosing the weights in Equation (4) according to

µi =
γ

εi
, (7)

and satisfying the conditions in Appendix A, the VIM esti-
mate matches the BLUE estimate computed using the spatial
correlation function entailed by the norm f(φ).

For the norm f(x) in Equation (5) and the domain Ω = R2,
the equivalent spatial correlation function is

R(x1, x2) =
‖x1 − x2‖

L
K1

(
‖x1 − x2‖

L

)
, (8)

where K1 is the first modified Bessel function of the second
kind [8]. Figure 2 plots Equation (8) versus ‖x1 − x2‖.

Fig. 2. Spatial correlation R(x1, x2) (as given in Equation (8)) versus
distance ‖x1 − x2‖, with L = 1.

x

x

Fig. 3. Finite element mesh with seven triangular elements, divided between
two robots. The elements composing the mesh meet only along full edges
or at vertices. Robot locations are denoted “x”. Dots represent nodes.
Each robot’s subdomain (blue and green shaded regions) consists of several
triangular elements. Within each subdomain, the triangular elements compose
a collective element. Thus, the mesh can be viewed as triangular, with each
subdomain consisting of multiple triangular elements, or as polygonal, with
each subdomain corresponding to a collective element.

E. Finite Element Method

We use the finite element method (FEM) to minimize the
cost functional in Equation (4), as established in [6], [7], [9]–
[12]. In FEM, the domain is partitioned into a mesh of N non-
overlapping subdomains Ωe called elements (see Figure 3). In
a valid mesh, the subdomains intersect only at vertices or along
full edges. Within each element, the field is approximated as a
linear combination of m shape functions wj(x) ∈ R and local
nodal values [qe]j ∈ Rm, j = 1 to m. Thus,

φe(x) = wT (x)qe, (9)

where w(x) ∈ Rm and qe ∈ Rm are the shape functions and
local node values stacked, respectively, into vectors.

The shape functions w(x) are chosen in advance and the
local node vectors qe are unknown (see Appendix B).

Each nodal vector qe is local to element e; however, nodes
on adjacent element edges at the same location correspond to
the same global nodal value. Generally, there are M < mN
nodes in the finite element mesh. The global node vector q ∈
RM is related to the local node vectors by the gather matrices
Be ∈ Rm×M such that

qe = Beq. (10)

Each row of Be contains exactly one nonzero element, equal
to one, and each column of Be has either zero or one nonzero

element; thus every local nodal value corresponds to exactly
one global nodal value.

By defining φe(x) = 0 when x 6∈ Ωe, the estimate of the
entire field is

φ̂(x) =

N∑
i=1

φe(x). (11)

We define the local load vector

ge =
∑

{k:Xk∈Ωe}

µkw(Xk)zk (12)

and local stiffness matrix

Ke =

∫
Ωe

[(
∂2w

∂[x]21

)(
∂2w

∂[x]21

)T
+

(
∂2w

∂[x]22

)(
∂2w

∂[x]22

)T
+ 2

(
∂2w

∂[x]1∂[x]2

)(
∂2w

∂[x]1∂[x]2

)T
+

2

L2

(
∂w

∂[x]1

)(
∂w

∂[x]1

)T
+

2

L2

(
∂w

∂[x]2

)(
∂w

∂[x]2

)T
+

1

L4
wwT

]
dΩe +

∑
{k:Xk∈Ωe}

µkw(Xk)wT (Xk). (13)

Substituting Equations (11) to (13) into the cost functional
(Equation (4)) and manipulating yields

J [φ̂] =

N∑
e=1

(qTe Keqe − 2qTe ge) +

n∑
j=1

µjz
2
j . (14)

Substituting Equation (10) into Equation (14) and minimiz-
ing with respect to q yields the global FEM equation

Kq = g, (15)

with global stiffness matrix

K =

N∑
e=1

BTe KeBe (16)

and global load vector

g =

N∑
e=1

BTe ge. (17)

The measurement values enter the FEM equations only
through g, although the measurement positions affect both K
and g.2 Solving Equation (15) for q provides the field estimate.

Remark 4. As in [7] we use natural (or Neumann) boundary
conditions. Thus the derivatives of φ̂(x) on the boundary of Ω
and normal to it are zero and do not explicitly appear (see [3],
[6], [7]). Using the Veubeke triangular elements described in
Appendix B with these boundary conditions results in a well-
posed FEM problem: see [4], [43], [44] for details.

TABLE II
SYMBOL DEFINITIONS FOR SECTION III

Symbol Description
Ωi ⊂ Ω Robot i’s subdomain
p ∈ R2 Position in the field
pi ∈ R2 Robot i’s position
Vi Robot i’s Voronoi neighbors
Tv Number of iterations for Voronoi coverage
τijk Delaunay triangle with vertices pi, pj , and pk

dijk ∈ R Distance between circumcenter and incenter of τijk
R̄ijk ∈ R Circumradius of Delaunay triangle τijk
r̄ijk ∈ R Inradius of Delaunay triangle τijk
Aijk ∈ R Area of Delaunay triangle τijk
dij ∈ R Distance between robots i and j
τi Set of sets {j, k} such that τijk is a Delaunay triangle

G(p1, . . . pn) Cost function penalizing the Voronoi edge length
β ∈ R Step size for Voronoi edge expansion algorithm
Ts Number of iterations for edge expansion algorithm

`max ∈ R Maximum side length for the FEM mesh

III. DEPLOYMENT

Table II summarizes the notation for this section. Our
distributed variational inverse method (DVIM) allows robot
groups to estimate the environment using VIM. Each robot
communicates bidirectionally with neighbors and estimates
only a subset of the environment, yet each local estimate
converges to a piece of the global VIM estimate.

The algorithm consists of two basic tasks: deployment and
estimation. Deployment consists of three stages: coverage,
edge expansion, and meshing. During coverage, the robots
spread out across the domain and establish their subdomains.
The edge expansion algorithm improves the conditioning of
the resulting FEM mesh. Finally, during the meshing phase,
the robot establishes an FEM mesh in its own subdomain, that
is a piece of a global FEM mesh. During estimation, a static
condensation process is used, enabling each robot’s mesh to
be treated as a single element in a global FEM mesh.

After deployment, the robots take their measurements and
then begin the estimation task. To estimate the environment,
the robots solve the FEM problem using the alternating
direction method of multipliers (ADMM).

For time-varying fields, the robots run the estimation pro-
cess repeatedly, with newly acquired measurements. Robots
can also patrol their own subdomains to obtain measurements
at different locations (see e.g., [17]); however, for simplicity
we assume they remain stationary after deployment. Occasion-
ally, the robots may rerun the coverage algorithm using the
estimation uncertainty or a user-specified interest function as
a density function. This redeployment requires reforming the
mesh. See Appendix A for how the DVIM algorithm for field
estimation can also approximate the estimation uncertainty.
Determining when to patrol the existing subdomain versus
when to rerun the coverage algorithm is left for future work.

A. Coverage
During the coverage phase, each robot establishes a sub-

domain Ωi ⊂ Ω. Collectively, the robots partition Ω into n
non-overlapping subdomains that cover Ω.

2The terms stiffness matrix and load vector originate from solid mechanics,
where FEM is used to analyze mechanical stress and strain.

We use Voronoi cells for the subdomains. The Voronoi cell
for robot i consists of all points in Ω closer to robot i than to
any other robot:

{p ∈ Ω : ‖p− pi‖ ≤ ‖p− pi‖, for all i 6= j}, (18)

where pi is the position of robot i. The collection of all such
Voronoi cells is the bounded Voronoi diagram [45]. Two robots
are Voronoi neighbors if their Voronoi cells share an edge.3

The set of robot i’s Voronoi neighbors is Vi.
If the robots can communicate with their Voronoi neighbors

and know their absolute position and the domain boundary, the
algorithms of [46], [47] allow distributed computation of the
Voronoi cell.

Domain Coverage: To achieve subdomains with similar
areas, the robots apply a Voronoi coverage algorithm based
on centroidal Voronoi diagrams (CVD). In a CVD, the robots
are positioned at the centroid of their Voronoi cells [45]. Upon
initial deployment, the robots execute the coverage algorithm
for Tv timesteps.

Remark 5. The distribution of the robots can be weighted by
a density function, allowing there to be more robots deployed
in areas of greater uncertainty or interest. For simplicity,
our implementation operates in a convex domain, using the
algorithm of [48] with a uniform density. For non-convex
regions the algorithm of [49] or [50] can achieve a similar
configuration.

Although the Voronoi cells of the CVD have similar areas
(and thus each robot has approximately equal estimation
responsibility), the cells in a CVD may (and often do) contain
arbitrarily short edges [51]. Short edges lead to ill-conditioned
FEM problems, making the estimation algorithm converge
more slowly [52]. To avoid short edges, we introduce a
distributed edge expansion algorithm that runs after the CVD
algorithm.

B. Edge Expansion

Our edge expansion algorithm extends the work of [51] by
decentralizing it. First, we require some definitions.

Definition 1. The circumcircle of a triangle is the circle
passing through all three triangle vertices, and its center is
the circumcenter.

Definition 2. The incircle of a triangle is the largest circle
that can be inscribed inside that triangle, and the incenter is
the center of the incircle (see Figure 4).

Definition 3. The Delaunay triangle τijk is the triangle whose
vertices are at the positions of robots i, j, and k that are
Voronoi neighbors of each other (i.e., i ∈ Vj∩Vk, j ∈ Vi∩Vk,
and k ∈ Vi ∩ Vj).

Definition 4. A Voronoi diagram where every Voronoi vertex
is shared by exactly three Voronoi cells is non-degenerate.

3The degenerate case of two regions intersecting at only a single vertex
occurs with probability zero for randomly distributed robots [46]. Additionally,
our deployment algorithm drives the robots away from such configurations.

Fig. 4. Robots i, j, and k are Voronoi neighbors of each other and therefore
are vertices of Delaunay triangle τijk (black). Robots i, j, and ` are Voronoi
neighbors of each other and therefore are vertices of Delaunay triangle τij`
(blue). The circumcircles (solid) and incircles (dashed) are also shown. The
black and blue dots (connected by the dashed line), are the circumcenters of
Delaunay triangles, and are therefore Voronoi vertices. The gray dashed line
is therefore a Voronoi edge. The incircles are denoted by the dashed circles.
As the circumcenters move toward the incenters, the length of the Voronoi
edge between them increases.

The vertex shared by regions Ωi, Ωj , and Ωk is the
circumcenter of Delaunay triangle τijk [45]. Therefore, a short
Voronoi edge occurs when two Delaunay triangle circumcen-
ters are near each other. To avoid this circumstance, the method
of [51] minimizes the distance dijk between every Delaunay
triangle’s circumcenter and incenter (see Figure 4).

Let R̄ijk be the circumradius, r̄ijk be the inradius, and Aijk
be the area of Delaunay triangle τijk. Let dij be the Euclidean
distance between robots i and j. Then, as per [51],

d2
ijk = R̄ijk(R̄ijk − 2r̄ijk), (19)

with
R̄ijk =

dijdikdjk
4Aijk

(20)

and
r̄ijk =

2Aijk
dij + dik + djk

. (21)

Let τi be the set of two-element sets {j, k} such that τijk is a
Delaunay triangle. A cost function penalizing short distances
between Delaunay incenters and circumcenters is (see [51])

G(p1, . . . , pn) =
1

6

n∑
i=1

∑
{j,k}∈τi

R̄ijk(R̄ijk − 2r̄ijk). (22)

Let p⊥ = (−[p]2, [p]1) be the rotation of point p by 90◦

about (0, 0). Noting that every Delaunay triangle appears
in Equation (22) three times, the gradient of G(. . .) with
respect to the robot positions is4

∂G

∂pi
=

∑
(j,k)∈τi

[
(R̄ijk − r̄ijk)

∂R̄ijk
∂pi

− R̄ijk
∂r̄ijk
∂pi

]
, (23)

where
∂R̄ijk
∂pi

=

R̄ijk

[
1

d2
ij

(pi − pj) +
1

d2
ik

(pi − pk)− 1

2Aijk
(pk − pj)⊥

]
,

(24)

4Each Delaunay triangle appears three times because {j, k} ∈ τi implies
that {i, k} ∈ τj and {i, j} ∈ τk .

and

∂r̄ijk
∂pi

=
−2

(dij + dik + djk)2

[
Aijk
dij

(pi − pj)

+
Aijk
d2
ik

(pi − pk)− dij + dik + djk
2

(pk − pj)⊥
]
.

(25)

Remark 6. As written here, the derivative in Equation (23)
depends only on the positions of robot i’s Voronoi neighbors,
rather than, as derived in [51], depending on every Delaunay
triangle. Writing the derivative in this form allows the robots
to compute the gradient without global information.

To compute Equation (23), the robots send their positions to
their neighbors, compute their Voronoi neighbors, determine
the side lengths of neighboring Delaunay triangles, and com-
pute ∂G

∂pi
.

In our implementation (see Algorithm 1), generally the
robots move according to the gradient descent update rule

pk+1
i = pki − β

∂G

∂pi
, (26)

where β ∈ R is a fixed step size. After all the robots move
according to Equation (26) for Ts steps, they stop and begin
the meshing phase of the initialization task.

Edge Expansion Control Law Adjustments: There are two
adjustments that we make to the control law, both involving the
boundary of Ω. To avoid leaving the domain, each robot uses
Equation (26) to predict its next position; if that position lies
outside Ω, it halves the step-size and recomputes the control
law. This process is repeated until pk+1

i is inside Ω.
The second adjustment depends on the edges of the robot’s

Voronoi cell Ωi. For every edge of Ωi that coincides with an
edge of the global domain Ω, the gradient ∂G∂pi is projected onto
a vector pointing in the direction of the edge. This adjustment
compensates for the lack of fixed Delaunay vertices on the
boundary of Ω, as assumed in [51].

C. Meshing

After deployment, each robot forms an FEM mesh con-
sistent with its neighbors’ meshes, so that the union of each
robot’s mesh forms a valid FEM mesh (i.e., the elements cover
Ω and only intersect along full edges or at vertices).

Algorithm 2 outlines the meshing process. To ensure a
well-conditioned mesh, the meshing algorithm should produce
triangles without small angles or long edges. We use the
algorithm of [53], which ensures that all triangles have a
smallest angle larger than 20.7◦ (this constraint is locally
violated if the boundary of Ω has angles smaller than 20.7◦).
We also set the algorithm so that no edge length exceeds
`max = L

3 (as per [7]).
To ensure a consistent FEM mesh, robots that share edges

must place any mesh nodes on those shared edges at the same
position as their neighbors’ node placements. Therefore, prior
to meshing, every robot divides its edges into the minimum
number of segments such that no segment exceeds `max. The
nodes subdividing these edges will be nodes in the resulting

Algorithm 1 Distributed Coverage and Edge Expansion
Input:

The number of Centroidal Voronoi iterations Tv

The number of Edge Expansion iterations Ts

The Edge Expansion step size β
1: repeat . The centroidal Voronoi algorithm (e.g., [48])
2: Transmit pi
3: Receive pj from communication neighbors
4: Determine Voronoi neighbors and compute Ωi
5: Move to centroid of Ωi
6: until Tv iterations have occurred
7: repeat . Edge Expansion
8: Transmit pi
9: Receive pj from communication neighbors

10: Determine Voronoi neighbors
11: Compute ∂G

∂pi
using Equation (23)

12: Project ∂G
∂pi

onto any Ωi edges shared with Ω

13: while pk+1
i (from Equation (26)) not in Ω do

14: β → β/2
15: end while
16: Move according to Equation (26) using the
17: updated step size and projected gradient
18: until Ts iterations have occurred

mesh, and, due to symmetry, they will be at the same absolute
location for adjacent robots.

The robots then run the algorithm of [53] over their own
domains to mesh the interior. This algorithm guarantees that
the nodes previously added to subdivide the boundary of
the Voronoi cell Ωi are included in the mesh. However, the
algorithm may also add additional nodes to the boundary. The
robots remove these vertices so that only those vertices created
during the edge subdivision process are shared, resulting in a
consistent mesh between neighbors.

Algorithm 2 Distributed Meshing
Input: Voronoi cell Ωi and the maximum edge length `max

1: Subdivide the edges of Ωi, as follows:
2: for edge ei ∈ Ωi do
3: `← length of edge ei
4: nsegs ← d `

`max
e . Number of subdivided segments

5: `act ← `
nsegs

. Length of each subdivided segment
6: Add nodes to ei so edge ei has nsegs of length `act

7: end for
8: Mesh the subdivided Ωi, using the algorithm of [53]
9: Remove nodes added to edges of Ωi by algorithm of [53]

IV. DISTRIBUTED ESTIMATION

To perform distributed estimation, the robots must assemble
their local finite element meshes and then execute a distributed
optimization algorithm to solve for their estimate. Table III
summarizes the notation for this section.

TABLE III
SYMBOL DEFINITIONS FOR SECTION IV

Symbol Description
mi Number of nodes on robot i’s domain boundary
M̃ Total number of all robots’ nodes

q̃ ∈ RM̃ All robot node vectors, stacked
Q ∈ RM̃×M̃ ADMM preconditioning matrix
N` Index set containing local indexes into expanded node vector
Mi Index set local to robot i

q̂i ∈ Rmi Robot i’s primal vector
νi ∈ Rmi Robot i’s dual vector
u ∈ Rmi Robot i’s Lagrange multiplier vector
ρ ∈ R ADMM optimization parameter
α ∈ R ADMM relaxation paramter
Ta Number of steps to run the ADMM algorithm

ν̄i ∈ Rmi Dual vector sub-calculation that robot i transmits

A. Local FEM Assembly

To assemble its local FEM equations, each robot follows
the procedure outlined in Section II-E. However, instead of
global quantities, the robots use their local domains, local
meshes (from the deployment step), and local measurement
information. Each robot eliminates nodes that are not shared
with other robots (i.e., the nodes not on the boundary of Ωi)
using static condensation (see Appendix B).

This assembly procedure requires no communication and
effectively results in each robot’s domain corresponding to
a single element in a global finite element mesh. Thus each
robot has a local node vector qi ∈ Rmi , local stiffness matrix
Ki ∈ Rmi×mi , and local load vector gi ∈ Rmi , where mi is
the number of nodes on the boundary of robot i’s domain.

B. Distributed ADMM

After each robot has determined its own stiffness matrix
and node vector, it uses the distributed alternating directions
method of multipliers (ADMM) to solve the FEM problem.
This constrained optimization method enables each robot to
determine the local node vector qi, which constitutes a piece
of the solution to the global FEM problem.

To use ADMM, we first group the nodal values into three
vectors: the global node vector q ∈ RM , the local node vector
qi ∈ Rmi , and the expanded node vector q̃ = [q1, . . . qN] ∈
RM̃ , where M̃ =

∑N
i=1mi is the total number of local nodes.

As in regular FEM, the local vectors are related to the global
vector by the gather matrix: qi = Biq. The expanded node
vector is formed by concatenating a copy of each robot’s local
node vectors and can be expressed as q̃ = Bq, where B =

[BT1 , . . . , B
T
N]T ∈ RM̃×M is the global gather matrix.

The FEM problem is a constrained quadratic program:

arg min
q1...qN

N∑
i=1

(qTi Kiqi − 2gTi qi)

subject to Qq̃ = QBq, (27)

where Q ∈ RM̃×M̃ is an invertible diagonal pre-conditioning
matrix used to improve convergence.

Although the cost function of Equation (27) is decoupled
across robots, the constraint forces every robot’s local copy

of a nodal value to match its correct global counterpart. This
correspondence can be expressed as a collection of index sets

N` = {j : [q̃]` ∼ [q]k implies [q̃]j ∼ [q]k} for ` = 1 to M̃,

where [q̃]` ∼ [q]k indicates that the two nodal values corre-
spond to the same node. Let Mi be the set of local indices
for robot i’s nodes. Because q̃ is partitioned across robots,
each robot can (conceptually) permute q̃, making its own local
node vector qi first (i.e., in implementation each robot uses
Mi = {1 to mi}). The robots find N` for each of their own
nodes by communicating with their Voronoi neighbors. Each
robot transmits its local node locations and indices. Nodes at
the same location are then grouped together.

To solve Equation (27) we use the pre-conditioned ADMM
method of [14]. ADMM solves Equation (27) by repeating
three steps: a primal update (with local primal vector q̂i ∈
Rmi), a dual update (with local dual vector νi ∈ Rmi), and
a Lagrange multiplier update (with local Lagrange multiplier
vector ui ∈ Rmi). Only the dual update requires communica-
tion.

The ADMM iterations for robot i are below, where super-
scripts with k indicate iteration number:

q̂k+1
i = (Ki + ρQTi Qi)

−1(gi + ρQTi (Qiν
k
i − uki)), (28)

[ν]k+1
` =

1∑
j∈N`

[Q]2jj

∑
j∈N`

[ν̄]kj , for ` ∈Mi, (29)

uk+1
i = uki + αQiq̂

k+1
i + (1− α)Qiν

k
i −Qiνk+1

i . (30)

Here, ρ > 0 and 0 < α < 2 are optimization parameters, the
global dual variable is ν ∈ RM , and

[ν̄]kj = [Q]jj(α[Q]jj [q̂]
k+1
j + (1− α)[Q]jj [ν]kj + [u]kj). (31)

When Q = I and α = 1, the pre-conditioned overrelaxed
ADMM becomes regular ADMM [13].

Each robot computes Equations (28), (30) and (31) locally
and then transmits its local vector ν̄i ∈ Rmi to its neighbors.
Using the index set N` and the received ν̄ vectors, each robot
computes Equation (29). The ADMM steps are repeated for
Ta time steps (see Algorithm 3).

C. Communication Analysis

If all robots communicate with their Voronoi neighbors,
they can implement Equation (29) because two robots that
are not Voronoi neighbors do not contribute to each others’
relevant dual variable ν entries. After their Voronoi neighbors
are established, the robots ignore packets from non-neighbors.
Communication between the robots occurs in three stages.

The first stage happens only once per meshing operation,
and lets the robots determine N`, the correspondence between
their nodes and those of its neighbors. Each robot transmits
a vector whose length is proportional to mi, the number of
nodes on robot i’s subdomain boundary.

The second communication step occurs once per ADMM
run: the robots transmit the diagonal pre-conditioning matrix
Qi transmitting a vector whose length is proportional to mi.

Algorithm 3 Distributed ADMM
Input:

The number of ADMM iterations Ta

Set N` of nodes robot i shares with its Voronoi neighbors
Local measurements zi and their locations Xi.
ADMM parameters ρ and α

Output: Estimate of local node states qi
1: Compute measurement weights µi
2: Local FEM assembly to find Ki and gi
3: Transmit pre-conditioning entries, the diagonal of Qi
4: Receive pre-conditioning entries from Voronoi neighbors
5: repeat
6: Update the primal variables q̂i using Equation (28)
7: Compute [ν̄]j for each local node j with Equation (31)
8: Transmit [ν̄]j for each local node j
9: Receive ν̄ from each neighbor ` ∈ Vi

10: Compute the dual update using Equation (29)
11: Update the Lagrange multipliers using Equation (30)
12: until has executed Ta iterations
13: return The primal (i.e., local node) values q̂i

Finally, every ADMM iteration requires every robot to
transmit ν̄i ∈ Rmi . This step dominates the communication.
The size of ν̄i depends on the number of nodes on the
boundary of each robot’s FEM mesh, so on each iteration each
robot sends a packet containing on the order of mi numbers.

D. Convergence and Parameter Selection

Convergence of the ADMM algorithm is guaranteed; how-
ever, determining when convergence occurs requires comput-
ing residuals that depend on global information [13]. To avoid
this computation, the robots run ADMM for a fixed number
of iterations. To track time-varying environments, ADMM is
restarted with new measurements and previous measurements,
weighted according to a time covariance function (see [17]).
Measurements with weights below a threshold are discarded.

Remark 7. To track time-varying fields, we assume that
the timescale of environmental variation is slower than that
of algorithm convergence. This restriction also applies to
consensus-based estimation methods such as [22], [29].

Remark 8. We assume each robot knows its absolute position
(obtained, for example, via GPS). Inaccuracy in this knowl-
edge manifests itself as noise in the estimate. The effect of
such noise on DVIM is the same as that of VIM because the
distributed estimate converges to the centralized estimate.

The convergence rate of ADMM depends on its parame-
ters and (indirectly) on the condition number of K. In our
simulations, improving the conditioning of K by adjusting
the FEM mesh (using the edge expansion algorithm proposed
in Section III-B) has ensured consistent performance of the
algorithm across a range of scenarios (see Section VI).

Convergence analysis and the selection of ρ, α, and Q
for a system where each robot estimates the same vector
are discussed in [14]. Although we use this algorithm, the
analysis techniques of [14] do not directly apply because, with

our communication structure and distribution of the solution
vector across the robots, we cannot satisfy a key assumption.
In particular, [14] assumes that QTi Qi = Ki for i = 1, . . . N ;
however, choosing Qi to satisfy this assumption is equivalent
to solving the global FEM problem. This equivalence occurs
because distributing Equation (29) requires the distributed
computation of (BTQTQB)−1 which, when QTi Qi = Ki,
becomes the same as inverting the global stiffness matrix.

Instead of enforcing QTi Qi = Ki, we set the diagonal
elements of Qi to be the square root of the diagonal elements
of Ki (i.e., [Q]jj =

√
[K]jj). Thus QTi Qi approximates the

pre-conditioning assumption from [14]. In our experience, this
pre-conditioning has greatly improved the performance of the
ADMM algorithm. The parameters ρ and α are manually tuned
via simulation; however, as discussed in Section VI, parame-
ters tuned for one small estimation problem have worked well
across a range of estimation scenarios.

E. Timing
The deployment task occurs for a fixed number of timesteps.

The meshing task requires only one timestep. Then the esti-
mation task occurs for a fixed number of timesteps and can
be repeated with new measurements periodically.

Conceptually, the timing and coordination of these tasks
depends on a synchronized global clock. The transitions be-
tween the various tasks depends on running each task and
switching between tasks simultaneously. Implementations can
avoid needing a global clock by using the following scheme.

Every algorithm requires a single communication step per
iteration. The robots first transmit local information to their
neighbors and then wait to receive information from their
neighbors. When a robot reaches the fixed number of timesteps
for a task (according to its internal count), it starts the next
task. The first communication step in the next task is always
a transmission and the information required to compute the
packet is available locally. Receiving robots detect when
the received packet matches the packet type for the next
task. Upon receiving such a packet, those robots immediately
transition to the next task as well. This task preemption spreads
across the network until all the robots perform the same task.

V. PERFORMANCE EVALUATION

We analyze three aspects of our algorithm’s performance:
communication topology, memory usage, and total communi-
cation. All three of these factors directly contribute to the cost
and energy usage of the robots. These performance measures
depend on the correlation length scale of the environment and
the number of robots used to measure it.

We also compare DVIM to consensus-based approaches
(e.g., [22]), where all robots agree on a full environment
estimate, and approaches with a distributed model, (e.g., [26],
[28], [29]), where each robot estimates a subset of the en-
vironment. Of the methods with a distributed environmental
representation, we focus on the Kriged Kalman filter of [29]
because it is the most similar to DVIM.5 In particular, one

5Technically, [29] also has a consensus-based component using global basis
functions; however, the BLUE portion of the estimate is computed separately
from the consensus-based part.

step in the distributed Kriged Kalman filter of [29] uses Jacobi
over-relaxation to produce a BLUE estimate; thus our methods
incorporate spatial uncertainty similarly, due to the equivalence
of VIM and BLUE (see Appendix A). We refer to this step
of the distributed Kriged Kalman filter as DBLUE and use it
for our comparison.

To ease comparison, we adopt a radius-limited commu-
nication model, like the model used in [29]: every robot
communicates with talks to every other robot within a radius
R of itself and no other robots. We also assume that the
environment is a spatial random field with correlation length L
and correlation function given by Equation (8). Our analysis
considers the performance as the correlation length and the
density of the robots varies.

All distance and area measurements are normalized by
the longest possible distance between any two points in the
domain. For example, a communication radius of 1 means
that every robot communicates with every other robot. In all
the examples, the variance of the sensor noise is εi = .01 and
the robots’ initial positions are uniformly randomly distributed
(so the robots do not undergo the deployment phase).

A. Communication Topology

Here we examine the communication radius required by
DVIM and DBLUE to generate an estimate, at different
correlation lengths and robot densities. We omit consensus-
based methods from the comparison because they typically
apply to any connected network, a weaker requirement than
DVIM or DBLUE. A small communication radius results in
lower transmission power and reduces interference between
robots transmitting simultaneously.

DBLUE Communication Radius: In DBLUE, the robots’
subdomains are discs of radius R̃, centered at each robot’s
location. Unlike in DVIM, in DBLUE the subdomains might
overlap and might not cover the whole domain. To compare
DVIM and DBLUE, we assume that robots cover equally sized
subdomains: area covered per robot is 1

D , where D is the robot
density (the number of robots divided by the domain’s area).

For a robot running DBLUE to estimate all points within
a radius R̃, it must know all measurements within a radius
of R̃ + ρ̄L, where ρ̄ > 0 sets a distance beyond which the
correlation of the measurement and estimate location becomes
negligible. Obtaining these measurements (with one-hop com-
munication) requires a communication radius of R̃+ρ̄L. Since
each robot covers an area of 1

D = πR̃2, for a given robot
density the communication radius required by DBLUE is

R =

√
1

Dπ
+ ρ̄L. (32)

The required radius decreases slightly with increasing robot
density because robots estimate smaller regions; however, for
high density the effect of the correlation length dominates.

DVIM Communication Radius: In DVIM, the communi-
cation radius must be large enough such that every robot
communicates with its bounded Voronoi neighbors. This radius
is independent of the environmental correlation length.

Fig. 5. Minimum required communication radius versus robot density, with
distances normalized by the diameter of the circular domain. Curves are
labeled with the value of L (for DBLUE) or with DVIM (there is only one
DVIM curve because the DVIM communication radius is independent of L).
Communication radii above the dashed line result in all-to-all communication.

We determine the communication radius for a given robot
density empirically. We randomly place robots in the unit cir-
cle and compute the longest distance between any robot and its
Voronoi neighbor: this distance is the minimal communication
required for every robot to see its Voronoi neighbors in the
given example. For each fixed robot density we repeat the test
for 100 trials and use the longest radius encountered as the
minimal required radius for that robot density.

DVIM and DBLUE Comparison: Figure 5 plots the mini-
mum required communication radius versus density for DVIM
and DBLUE at different correlation lengths, using ρ̄ = 1.
The results indicate that, although the required communication
radius decreases with density for both DVIM and DBLUE, in
DBLUE this effect is overwhelmed by the dependence on the
correlation length.

For DBLUE, the decrease in communication radius with
density is from each robot estimating a region of decreasing
size. The communication radius eventually reaches a minimum
related to the correlation length. For DVIM, the required radius
approaches zero as density increases—regardless of correlation
length—because the bounded Voronoi neighbors of each robot
become closer together.

For environments with longer correlation lengths, DVIM
requires a significantly smaller communication radius than
DBLUE. Our analysis is conservative and actually understates
the required communication radius for DBLUE because with
ρ̄ = 1 the correlation between the estimate and measurement
considered negligible is anything less than K1(1) = 0.60,
which is not negligible in most applications.

B. Memory

To measure memory usage, we estimate the number of
numbers each robot must store to produce an estimate any-
where within its subdomain. Consensus-based methods always
require more memory than DVIM or DBLUE because every

robot stores a global representation of the environment which,
for an equivalent estimate, is always a superset of the local
environment representations used in DVIM or DBLUE. Al-
though it uses more memory, such a global representation
means that every robot can estimate the environment any-
where, whereas methods like DVIM or DBLUE require a
query system (see e.g., [42]) if an operator wants to obtain
an environmental estimate at any location from any robot.

DBLUE Memory Usage: In DBLUE, every robot stores
every measurement and measurement location within R to
compute the estimate; therefore, the memory usage increases
with robot density and the number of measurements per
robot. Assuming one measurement per robot, there are DπR2

measurements and measurement locations that every DBLUE
robot must store. Substituting Equation (32) for R reveals that
the number of measurements each DBLUE robot stores is
approximately

Dπ

(√
1

Dπ
+ ρL

)2

. (33)

DVIM Memory Usage: For DVIM, the amount of memory
used per robot depends on the number of nodes in each robot’s
mesh. Each robot’s mesh generates triangles with side lengths
less than `max = L

3 and 12 nodes (See Appendix B). An
equilateral triangle with side length L

3 has area
√

3
4 L

2 so,
not accounting for overlapping nodes (which reduces memory
requirements), there are 12 1

D

√
3

4 L
2 nodes per robot.

With high robot density, each robot’s subdomain may have
smaller area than a single L

3 equilateral triangle. In this
case, we assume that the robot’s subdomain is hexagonal and
divided into 4 triangles.6 Accounting for overlapping nodes in
this case the minimum number of nodes per robot is 27.

DVIM and DBLUE Comparison: Figure 6 shows the mem-
ory usage per robot for DVIM and DBLUE. As robot den-
sity increases, the amount of memory required for DBLUE
increases without bound because (aside from practical lim-
itations) there can always be more robots added within the
relevant radius. Memory usage for DVIM decreases with
density until each robot’s subdomain contains the minimum
number of nodes due to it being smaller than an equilateral
triangle with side length L

3 .

C. Fixed Communication Radius

At a given communication radius, the DVIM curve in
Figure 5 shows the approximate minimum density needed by
DVIM to meet the Voronoi neighbor communication assump-
tion. At this same density value (and depending on the cor-
relation length), DBLUE may require a larger communication
radius than DVIM to incorporate all relevant measurements
and form a proper estimate. As the density increases above
this minimum, the errors in the DBLUE and DVIM estimate
decrease because there are more measurements; however,
DBLUE’s per robot memory usage grows unbounded whereas
DVIM’s per robot memory usage decreases to a fixed value.

6The average number of Voronoi neighbors is less than or equal to 6 [45].

Fig. 6. Memory usage per robot versus robot density for DVIM and DBLUE
estimators. Solid lines are for DVIM, dashed are for DBLUE; curve labels
provide the L value. As density increases the area covered per robot decreases,
reducing the memory requirements for DVIM. In DBLUE, memory usage
is dominated by the correlation length; as density increases there are more
measurements within the relevant distance of each robot, leading to increased
memory usage.

VI. SIMULATIONS

In this section we validate our approach using agent-based
simulations over a wide variety of conditions. We also analyze
the total communication required by DVIM and compare it to
the consensus-based method of [22].

We performed trials over a uniform grid of parameters: the
number of robots varied between 20 and 120 in increments
of one and the normalized correlation length was between
0.4 and 1.0 in increments of 0.05, for a total of 1313 trials.
The normalized communication radius of 0.6 was sufficient
for every robot to talk to its Voronoi neighbors at every trial.
The domain Ω was the unit square centered at (0.5, 0.5). The
robots’ initial positions were uniformly randomly distributed
in a subset of Ω (a square with a vertex at the origin and side
length of 0.0625).

The environment was a zero-mean Gaussian process with
unit background variance (γ = 1) and correlation given
by Equation (8). We generated a new random environment for
each trial by approximating the spatial random process over a
200×200 grid with the circular embedding algorithm of [54].
We used bilinear interpolation to get the field value between
grid points. Each robot had a sensor variance of 0.01, and the
maximum triangle length was L/3.

The robots ran Lloyd’s algorithm for Tv = 1000 iterations
and then the expansion algorithm for Ts = 100 iterations,
with a nominal step size of β = 0.5. There were Ta = 300
ADMM iterations, with parameters ρ = 0.1 and α = 1.8. We
hand tuned the ADMM parameters using a separate simulation
involving only four robots, so they were not specifically tuned
for the situations tested to generate our results.

Figure 7 shows the actual field and Figure 8 shows the
estimate for a trial with 60 robots and a normalized correlation
length of 0.7. Let qL be the merged vector of local solutions
after Ta ADMM iterations and qG be the global solution

Fig. 7. The actual environment for a trial with 60 robots and normalized
correlation length of 0.7.

Fig. 8. The local estimates and Voronoi cells for a trial with 60 robots and
normalized correlation length of 0.7.

vector, solved on a mesh composed of the individual robot’s
meshes. The relative convergence error is ‖qL−qG‖‖qG‖ .

Across all the trials, after 300 ADMM iterations, the best
relative convergence error between the global and local solu-
tions was on the order of 10−12, while the mean relative error
was 10−9 and the worst error was 10−6 (see Figure 9).

The number of robots n and the correlation length L relate
to convergence through their effect on the FEM mesh geometry
and therefore the conditioning of the problem. As n increases,
the area each robot covers is smaller (for fixed Ω). As L
increases, the maximum triangle side length used by the robots
increases. The general trend is that convergence slows slightly
as more robots are added and with higher correlation lengths
(see Figure 10). Lower error can be achieved by running
the ADMM estimator for longer or adjusting the ADMM
parameters for a narrower range of scenarios.

We also compare DVIM to the consensus-based method
of [22] using the equivalent timestep value, which measures
how many average consensus iterations the swarm can conduct

Fig. 9. Mean and maximum relative error versus ADMM iteration, across all
trials.

Fig. 10. Relative error (after 300 iterations) for each trial versus number of
robots and correlation length, on a logarithmic scale. Robot density and the
number of robots are the same here because the domain has unit area.

before the total number of numbers transmitted by the swarm
equals the number of numbers transmitted by DVIM: VtTa

Mn ,
where Vt is the total number of numbers the DVIM robots
transmit per timestep, Ta is the number of ADMM timesteps,
and M is the total number of states. The equivalent timestep
value assumes that the consensus-based method uses the same
number of states as DVIM and that each consensus estimator
transmits only one value per state.

In our trials, the total number of values transmitted was,
at worst, equivalent to what would be transmitted after 24
consensus iterations and, at best, equivalent to five consensus
iterations. For comparison, in [19], it takes an average con-
sensus estimator approximately 50 timesteps to converge for
a similar network. This performance suggests that DVIM can
significantly reduce the total communication cost of environ-
mental estimation versus consensus-based methods.

VII. CONCLUSION

We have introduced distributed VIM (DVIM), which uses
distributed FEM and ADMM to estimate an environment.
Although the estimates match a centralized solution, no single

agent has a full environment representation, allowing our
method to work even when the environment does not fit in
a single computer’s memory. Unlike existing methods, adding
more robots to a given area decreases the memory used per
robot and the required communication radius, and reduces the
total communication needed. Future work includes removing
the need for computing an FEM mesh by using mesh-free
FEM methods and incorporating a model of the field’s time
variation rather than repeatedly estimating static time-slices.

APPENDIX A

We compare two approaches to environmental estimation:
the best linear unbiased estimator (BLUE) and the variational
inverse method (VIM). BLUE minimizes the expected error
of the estimate, while VIM finds a smooth field close to
the measurements. As established in [15], [16], these two
seemingly different methods are closely related and even
equivalent under some conditions. The analysis in this section
relies heavily on the work of [2], [15], [16].

A. Best Linear Unbiased Estimator

To derive BLUE, we first write the estimate φ̂(x) of the
field φ(x) as a linear combination of the measurements:

φ̂(x) = uT (x)z, (34)

where u(x) ∈ RN is a weight vector whose weights depend
on the desired estimate position. The goal of BLUE is to
determine the weights u(x) that minimize the mean-square
error given by Equation (6). Proposition 1 describes the BLUE
in terms of the functional H that evaluates the field at the
measurement locations.

Proposition 1. For a zero-mean spatial random field with
covariance C(x1, x2), the BLUE is

φ̂(x) = FT (x)G−1z, (35)

where
F (x) = H(x1)C(x, x1) (36)

is the covariance vector E(φ(x)z) between each measurement
and the field at position x and where

G = E(zzT) = (H(x1)HT(x2))C(x1, x2) + ε (37)

is the measurement covariance matrix.

The minimal expected error of the estimate is

e(x) = C(x, x)− F (x)TG−1F (x). (38)

Proof. See [2].

B. Variational Inverse Method

We now write the solution to VIM in terms of functionals
and inner products. For VIM to be well posed, the norm
in Equation (4) must be the norm for a reproducing kernel
Hilbert space (RKHS) W. Therefore, we implicitly assume
that the field φ ∈W and the estimate φ̂ ∈W.

Since W is an RKHS, there exists, by the Riesz repre-
sentation theorem, a representer function rx ∈ W such that

〈rx, φ〉 = Lx[φ] = φ(x), where 〈·, ·〉 is the inner product and
Lx is the evaluation functional associated with W [15].

Every RKHS has an associated positive-definite func-
tion called the reproducing kernel, given by 〈rx1 , rx2〉 =
K(x1, x2). The value of K(x1, x2) depends on the norm.

Using representers, the cost functional Equation (4) is:7

J [φ] = 〈φ, φ〉+ (〈φ, r〉 − z)TU(〈φ, r〉 − z), (39)

where r is a vector of representer functions for each measure-
ment position (i.e., [r]i = rXi

), and U ∈ Rn×n is a diagonal
weight matrix such that the i-th diagonal element

Uii = µi. (40)

Using the representers, any function φ ∈W can be written

φ = rT b+ g, (41)

where b ∈ Rn is a vector of coefficients, and g ∈ W is
orthogonal to each representer [r]i (i.e., 〈[r]i, g〉 = 0 for
i = 1, . . . , n). Minimizing J [φ] now requires finding the
appropriate coefficients b and function g.

Proposition 2. The minimum φ̂k = arg minφ J [φ] is achieved
when g = 0 and

b = (〈r, rT 〉+ U−1)−1z. (42)

The resulting estimate is

φ̂k = rT (〈r, rT 〉+ U−1)−1z. (43)

Proof. See [2].

Although Proposition 2 provides the solution to the mini-
mization problem, it is of limited practical usefulness because
we do not know r. The finite element solution explained in
Section II-E allows us to approximate the space spanned by
r with systematically chosen basis functions and solve for the
appropriate coefficients.

C. Relationship Between VIM and BLUE

Both VIM and BLUE are closely related and parameters can
be chosen such that they are equivalent (see [2], [15], [16]).
We now establish this relationship.

Proposition 3. VIM and BLUE are equivalent when the
reproducing kernel K(x1, x2) and the correlation function
R(x1, x2) are the same and U = γε−1.

Proof. This proof is based on [2], [15]. Using properties
of reproducing kernels and recalling that r is the vector of
representers for each measurement location yields

r = H(x1)K(x, x1) (44)

and
〈r, rT 〉 = H(x1)HT(x2)K(x1, x2). (45)

Substituting Equations (44) and (45) into Equation (43) yields

H(x1)K(x, x1)
(
H(x1)HT(x2)K(x1, x2) + U−1

)−1

z. (46)

7When the inner product 〈·, ·〉 acts on vectors of functions, the rules of
vector multiplication apply but the multiplication operation is replaced with
〈·, ·〉. For example, 〈φ, r〉 is a vector whose i-ith entry is 〈φ, [r]i〉.

Substituting U = γε−1 and K(x1, x2) = R(x1, x2) yields the
BLUE estimate from Equation (35).

D. Estimation Uncertainty with VIM

Using the analogy between VIM and BLUE allows us to use
VIM (and DVIM) to determine the uncertainty in the estimate,
as discussed in [7], [11], [12]. Let the estimate of the field, as
a function of the measurements and their locations be given
by the analysis operator A:

φ̂(x) = A(z,X). (47)

The expected error in Equation (38) can be written as

e(x) = C(x, x)−A(F̄ ,X), (48)

where for each measurement i, [F̄]i = C([X]i, x) is the
covariance between each measurement location and the es-
timation location [9].

The analysis operator is evaluated by performing VIM;
essentially, to compute the error, measurements are substituted
with covariances [9], [12]. Technically, computing the error
field requires solving an FEM problem for each estimated
error location. However, an approximation using the “poor
man error” method of [9], [12] replaces every element in F
with the background variance γ. This approximation sacrifices
some accuracy for the ability to determine an error field with
only one additional FEM solution.

APPENDIX B

This appendix provides a practical guide to the Veubeke
triangular elements used in our FEM implementation. More
details and theory can be found in [43], [44].

The Veubeke triangular element consists of three sub-
triangles, combined into a single triangular element. Each
sub-triangle has a complete cubic polynomial interpolating
function that is constrained by the interpolating function of its
neighboring subtriangle. See Figure 12 for an overall picture.

A. Sub-triangle

1) The Degrees Of Freedom: The interpolating function
over the sub-triangle is the complete cubic polynomial:

a0 + a1x+ a2y + a3x
2 + a4xy

+ a5y
2 + a6x

3 + a7x
2y + a8xy

2 + a9y
3, (49)

where ai is one of the ten coefficients needed to describe
the polynomial. There are therefore ten degree-of-freedom
functionals that evaluate φe(x) and its derivatives at a given

Fig. 11. Veubeke subtriangle in the parent coordinate system (η, ξ) and in
the real coordinates (x, y). The dots represent nodes that are values, and the
arrows represent nodes that are derivatives (the arrow points in the direction of
the derivative). There are three value nodes (at each corner), three x derivative
nodes (at each corner), three y derivative nodes (at each corner), and one
normal derivative node (at the midpoint of one side).

nodal location. The degree-of-freedom functionals for the
triangle with vertices (x1, y1), (x2, y2), (x3, y3) are

σ0(p) = p(x1, y1) (50)

σ1(p) =
∂p(x, y)

∂x

∣∣∣x=x1
y=y1

(51)

σ2(p) =
∂p(x, y)

∂y

∣∣∣x=x1
y=y1

(52)

σ3(p) = p(x2, y2) (53)

σ4(p) =
∂p(x, y)

∂x

∣∣∣x=x2
y=y2

(54)

σ5(p) =
∂p(x, y)

∂y

∣∣∣x=x2
y=y2

(55)

σ6(p) = p(x3, y3) (56)

σ7(p) =
∂p(x, y)

∂x

∣∣∣x=x3
y=y3

(57)

σ8(p) =
∂p(x, y)

∂y

∣∣∣x=x3
y=y3

(58)

σ9(p) =

1√
(x2 − x3)2 + (y2 − y3)2

× (
∂p(x, y)

∂x
,
∂p(x, y)

∂y
)
∣∣∣x=

x1+x2
2

y=
y1+y2

2

· [y3 − y2, x2 − x3].

(59)

Each of these functionals corresponds to a shape function
(which we derive next), and are chosen such that σiwj(x) = 1
if i = j and zero otherwise.

To simplify the algebra, we define a reference triangle with
vertices at (0, 0), (1, 0), and (0, 1) and then transform from
this domain to the vertices of the actual triangle (x1, y1),
(x2, y2), (x3, y3) (see Figure 11). The correspondence between
reference and real triangle vertices is (x1, y1) = (0, 0),
(x2, y2) = (1, 0), and (x3, y3) = (0, 1).

The affine transformation between the reference triangle
coordinates (η, ξ) and the real triangle coordinates (x, y) is[

x
y

]
=

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] [
η
ξ

]
+

[
x1

y1

]
. (60)

Fig. 12. The full triangle consists of three sub-triangles placed together to
form a larger triangle. The circled numbers indicate the sub-triangle index.
The smaller numbers are node indices. At each sub-triangle vertices there are
three DOF: the value and the x and y derivatives.

To simplify notation we sometimes express coordinates as

x = X(η, ξ) (61)
y = Y (η, ξ) (62)
η = η̂(x, y) (63)

ξ = ξ̂(x, y). (64)

The Jacobian of the transformation is

J =

[
∂x
∂η

∂x
∂ξ

∂y
∂η

∂y
∂ξ

]
=

[
x2 − x1 x3 − x1

y2− y1 y3 − y1

]
. (65)

The FEM cost functional expressed over an element (i.e., a
real triangle) Ωe is∫

Ωe

f

(
φ(x, y),

∂φ(x, y)

∂x
,
∂φ(x, y)

∂y
,

∂2φ(x, y)

∂x2
,
∂2φ(x, y)

∂x∂y
,
∂2φ(x, y)

∂y2

)
dΩe, (66)

where f depends on the specific variational principle and is a
quadratic form of its arguments.

We change coordinates in Equation (66) so that the integra-
tion is performed over the reference triangle Ω̂e:∫

Ω̂e

f

(
φ(X̄(η, ξ)),

∂φ(X̄(η, ξ))

∂x
,
∂φ(X̄(η, ξ))

∂y
,

∂2φ(X̄(η, ξ))

∂x2
,
∂2φ(X̄(η, ξ))

∂x∂y
,
∂2φ(X̄(η, ξ))

∂y2

)
× |J |dΩ̂e,

where X̄(η, ξ) = (X(η, ξ), Y (η, ξ)).
Letting φ̂(η, ξ) = φ(X(η, ξ), Y (η, ξ)) be the interpolating

function over the reference triangle, the integral becomes∫
Ω̂e

f

(
φ̂(η, ξ),

∂φ̂(η, ξ)

∂x
,
∂φ̂(η, ξ)

∂y
,

∂2φ̂(η, ξ)

∂x2
,
∂2φ̂(η, ξ)

∂x∂y
,
∂2φ̂(η, ξ)

∂y2

)
|J |dΩ̂e, (67)

B. Change Basis from Standard to Reference Triangle

We can write φ̂(η, ξ) in terms of two bases for the complete
cubic polynomial space P3: the standard basis

w̄(η, ξ) = [1, η, ξ, η2, ηξ, ξ2, η3, η2ξ, ηξ2, ξ3] (68)

and a basis ŵ(η, ξ) defined such that

σ̂i(ŵj) =

{
1 i = j

0 otherwise,
(69)

where σ̂i is the DOF operation for the reference triangle (the
derivatives are in reference triangle coordinates as well).

Each basis function in ŵ is a linear combination of the
components of w̄, since both are bases for the same space:

ŵ(η, ξ) = Aw̄(η, ξ). (70)

Applying each σ̂i to Equation (70), and using the linearity of
σ̂i and the orthogonality property of Equation (69) yields

I = AV, (71)

where V T is a Vandermonde matrix such that V =
[σ̂0(w̄), . . . , σ̂9(w̄)]. Thus, A = V −1 and we can now compute
ŵ in terms of w̄ simply by applying σ̂i to w̄.

Noting that

∂w̄(η, ξ)

∂η
= [0, 1, 0, 2η, 0, 3η2, 2ηξ, ξ2, 0]T (72)

∂w̄(η, ξ)

∂ξ
= [0, 0, 1, 0, η, 2ξ, 0, η2, 2ξη, 3ξ2]T (73)

[
∂w̄(η, ξ)

∂ξ
]

[
1√
2

1√
2

]
=

[0,
1√
2
,

1√
2
, η
√

2,
η + ξ√

2
, ξ
√

2,

3η2

√
2
,
η2

√
2

+ ηξ
√

2,
ξ2

√
2

+ ηξ
√

2,
3ξ2

√
2

]T ,

(74)

the matrix V is

V =

1 0 0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 1 0 1√

2

0 0 1 0 0 1 1 0 1 1√
2

0 0 0 1 2 0 0 0 0 1√
2

0 0 0 0 0 1 0 1 0 1√
2

0 0 0 0 0 0 1 0 2 1√
2

0 0 0 1 3 0 0 0 0 3
4
√

2

0 0 0 0 0 1 0 0 0 3
4
√

2

0 0 0 0 0 0 0 1 0 3
4
√

2

0 0 0 0 0 0 1 0 0 3
4
√

2

. (75)

We now have

φ̂(η, ξ) = (V −1w̄(η, ξ))T q̂, (76)

where q̂ = σ̂(φ̂) is the vector of unknown nodal values.

Taking derivatives of Equation (76) and noting that q̂ is
constant yields:

∂φ̂(η, ξ)

∂x
=
∂(V −1w̄(η, ξ))T

∂x
q̂, (77)

∂φ̂(η, ξ)

∂y
=
∂(V −1w̄(η, ξ))T

∂y
q̂. (78)

Since ŵ(η, ξ) = V −1w̄(η, ξ) and f is a quadratic form,
Equation (67) is equivalent to

q̂T
∫

Ω̂e

f

(
ŵ(η, ξ),

∂ŵ(η, ξ)

∂x
,
∂ŵ(η, ξ)

∂y
,

∂2ŵ(η, ξ)

∂x2
,
∂2ŵ(η, ξ)

∂x∂y
,
∂2ŵ(η, ξ)

∂y2

)
|J |dΩ̂eq̂

T .

(79)

C. Change Basis from Reference to Real Triangle

We need to express q̂, the nodal vector in the basis of the
reference triangle, in the coordinates of the real triangle to
equate neighboring FEM nodes during assembly.

Given the shape functions in the real triangle’s basis w(x, y)
and the nodal vector q, we have

wT (x, y)q = ŵT (η̂(x, y), ξ̂(x, y))q̂. (80)

To change the basis we follow a process analogous to the
one used to convert from the standard basis to the reference
triangle. For change of basis matrix B,

w(x, y) = Bŵ(η̂(x, y), ξ̂(x, y)). (81)

Applying σi to both sides of Equation (81) yields[
σ0(w(x, y)) . . . σ9(w(x, y))

]
= BW, (82)

where

W =
[
σ0(ŵ(η̂(x, y), ξ̂(x, y))) . . . σ9(ŵ(η̂(x, y), ξ̂(x, y)))

]
.

(83)
The left-hand side of Equation (82), by construction, is I . The
matrix W is the transpose of a Vandermonde matrix. We can
evaluate W and find B via B = W−1.

From Equations (80) and (81) we see that

ŵT (η̂(x, y), ξ̂(x, y))BT q = ŵT (η̂(x, y), ξ̂(x, y))q̂. (84)

Therefore,
q̂ = BT q. (85)

Substituting Equation (85) into Equation (79) allows us to
express the integral over a sub-triangle in the proper basis.

D. Merging the Triangles

Three sub-triangles, placed with their normal derivatives
outwards to form a full triangle (as depicted in Figure 12)
compose the Veubeke triangle. Such triangles are formed from
a triangular mesh by splitting each triangle at its centroid.

The combined triangle has 15 nodes: value and derivatives
at the triangle vertices, value and derivatives at the centroid,
and the normal derivatives at the midpoint of each side. Let
q ∈ R15 be the nodal vector for the triangle, and let q1 ∈ R12,

q2 ∈ R12, and q3 ∈ R12 be the nodal vectors for each sub-
triangle. Each sub-triangle’s nodal vector is written in terms
of the global nodal vector according to

qi = Liq. (86)

This process is analogous to generic finite element assembly.
Each Li matrix is sparse. Table IV lists the indices of Li

that are equal to one. We partition each Li into two parts:

Li =
[
L̄i L0

]
, (87)

where L0 contains the columns that map the global nodes to
the nodes at the centroid of the full triangle and L̄i maps global
nodes to the edges of the triangle. The value of the element
inside each sub-triangle isφ(1)(x, y)

φ(2)(x, y)
φ(3)(x, y)

 =

L̄1 L0

L̄2 L0

L̄3 L0

[q̄
q0

]
, (88)

where q0 contains the nodal values at the centroid of the
triangle and q̄ contains all other nodal values. Equation (88)
provides the value anywhere within the whole triangle, given
the global node vector q. To remove the internal degree
of freedom we introduce a constraint and perform static
condensation.

E. Static Condensation

We first introduce constraints at the interfaces between the
sub-elements. Let nij be the normal vector between sub-
element i and j, with nij = −nji. Let ∂φ

n be the directional
derivative in the direction of normal vector n.

At the midpoint on the internal edge between sub-elements
i and j we introduce the constraint

∂φ(i)

nij
+
∂φ(j)

nji
= 0. (89)

In terms of the basis functions and the global node vector,
Equation (89) becomes(

∂w(i)

∂nij
Ri +

∂w(j)

∂nji
Rj

)
q = 0. (90)

Stacking the equations at each interface yields[
W̄ W0

] [q̄
q0

]
= 0, (91)

with

W̄ =

∂w(1)

∂n13
R̄1 + ∂w(3)

∂n31
R̄3

∂w(2)

∂n21
R̄2 + ∂w(1)

∂n12
R̄1

∂w(3)

∂n32
R̄3 + ∂w(2)

∂n23
R2

 , (92)

and

W0 =

∂w(1)

∂n13
R0 + ∂w(3)

∂n31
R0

∂w(2)

∂n21
R0 + ∂w(1)

∂n12
R0

∂w(3)

∂n32
R0 + ∂w(2)

∂n23
R0

 . (93)

Solving the constraint in Equation (91) for q0 yields

q0 = −W−1
0 W̄ q̄. (94)

L1 (1,13) (2,14) (3,15) (4,1) (5,2)
L1 (6,3) (7,4) (8,5) (9,6) (10,10)
L2 (1,13) (2,14) (3,15) (4,4) (5,5)
L2 (6,6) (7,7) (8,8) (9,9) (10,11)
L3 (1,13) (2,14) (3,15) (4,7) (5, 8)
L3 (6,9) (7,1) (8,2) (9,3) (10,12)

TABLE IV
THE NONZERO INDEXES OF EACH Li MATRIX.

From the FEM for an element, we must minimize

1

2
qTKq − gT q, (95)

where K is the stiffness matrix and g is the load vector.
Partitioning K and g to conform with q yields

1

2

[
qT qT0

] [K1 K2

K3 K4

] [
q
q0

]
−
[
ḡT gT0

] [q̄
q0

]
. (96)

Expanding Equation (96) yields

1

2
(q̄TK1q̄+ q̄TK2q0 +qT0 K3q̄+qT0 K4q0)− ḡT q̄−gT0 q0. (97)

Substituting Equation (94) into Equation (97) yields

1

2
q̄TKr q̄ − gTr q̄, (98)

where the reduced stiffness matrix is

Kr = K1−K2W
−1
0 W̄−W̄TW−T0 K3 +W̄TW−T0 K4W

−1
0 W̄

(99)
and the reduced load vector is

gr = ḡT + gT0 W
−1
0 W̄ . (100)

Now, in the assembly process, each element uses the re-
duced stiffness and load vectors Kr and gr. Additionally,
when assembling, the normal derivatives of adjacent elements
point in opposite directions. To account for this, one element
considers positive nodal values to represent positive normal
derivatives and the other element considers positive normal
values to represent negative normal derivatives. The element
that views positive nodal values as the negative normal deriva-
tives performs the normal assembly process, but then must
negate some elements of Kr and gr. If the element views its
local node j as being negated, it negates row j of Kr and gr
and also column j of Kr to account for the difference (note
that [Kr]jj retains its original sign).

In the centralized case the global node indexes are used to
determine which element negates its normal derivatives. In the
distributed case, the robot with the lower identifier negates its
adjacent normal derivatives.

F. Polygonal Elements

Another static condensation process is performed to com-
bine the Veubeke triangular elements into polygonal elements
corresponding to each Voronoi cell. To perform the static
condensation, the robots partition qi into two parts: q̄i, which
contains the nodal values on the boundary of the subdomain
Ω̄i, and ξi, which contains the nodal values in the interior of

Ω̄i. Partitioning Ki and gi to conform with the partitioning of
qi yields the local FEM equation[

K̄i K̂i

K̂i K̃i

] [
q̄i
ξi

]
=

[
ḡi
g̃i

]
. (101)

Expanding Equation (101) yields

ξi = K̃−1
i (g̃i − K̂iq̄i), (102)

and
K ′i q̄i = g′i, (103)

where
K ′i = K̄i − K̂iK̃

−1
i K̂i, (104)

and
g′i = ḡi − K̂iK̃

−1
i g̃i. (105)

Matrix K̃i is invertible by construction of the FEM problem.
Now we only must find q̄i in a decentralized way; once a robot
knows q̄i it can recover ξi using Equation (102).

REFERENCES

[1] D. M. Glover, W. J. Jenkins, and S. C. Doney, Modeling Methods for
Marine Science. Cambridge: Cambridge University Press, 2011.

[2] A. F. Bennett, Inverse Methods in Physical Oceanography. Cambridge
University Press, 1992.

[3] J. Fish and T. Belytschko, A First Course in Finite Elements. John
Wiley & Sons, 2007.

[4] Z. Chen, Finite Element Methods and Their Applications. Heidelberg:
Springer-Verlag, 2005.

[5] P. P. Brasseur and J. A. Haus, “Application of a 3-D variational inverse
model to the analysis of ecohydrodynamic data in the Northern Bering
and Southern Chukchi Seas,” Journal of Marine Systems, vol. 1, no. 4,
pp. 383 – 401, 1991.

[6] P. Brasseur, J. Beckers, J. Brankart, and R. Schoenauen, “Seasonal
temperature and salinity fields in the Mediterranean Sea: Climatological
analyses of a historical data set,” Deep Sea Research Part I:
Oceanographic Research Papers, vol. 43, no. 2, pp. 159 – 192, 1996.

[7] C. Troupin, M. Ouberdous, D. Sirjacobs, A. Alvera-Azcárate, A. Barth,
M.-E. Toussaint, S. Watelet, and J.-M. Beckers, DIVA User Guide,
GeoHydrodynamics and Environment Research, MARE (GHER),
University of Liege, 2015. [Online]. Available: http://modb.oce.ulg.ac.be

[8] C. Troupin, F. Machı́n, M. Ouberdous, D. Sirjacobs, A. Barth, and J.-M.
Beckers, “High-resolution climatology of the northeast Atlantic using
data-interpolating variational analysis (DIVA),” Journal of Geophysical
Research: Oceans, vol. 115, no. C8, 2010.

[9] C. Troupin, A. Barth, D. Sirjacobs, M. Ouberdous, J.-M. Brankart,
P. Brasseur, M. Rixen, A. Alvera-Azcárate, M. Belounis, A. Capet,
F. Lenartz, M.-E. Toussaint, and J.-M. Beckers, “Generation of analysis
and consistent error fields using the data interpolating variational
analysis (DIVA),” Ocean Modelling, vol. 52–53, pp. 90 – 101, 2012.

[10] A. Barth, A. A. Azcárate, P. Joassin, J.-M. Becers, and C. Troupin,
Introduction to Optimal Interpolation and Variational Analysis, GeoHy-
drodynamics and Environment Research (GHER), 2008.

[11] J. Brankart and P. Brasseur, “The general circulation in the
Mediterranean Sea: a climatological approach,” Journal of Marine
Systems, vol. 18, no. 1–3, pp. 41 – 70, 1998.

[12] J.-M. Beckers, A. Barth, C. Troupin, and A. Alvera-Azcárate, “Approxi-
mate and efficient methods to assess error fields in spatial gridding with
data interpolating variational analysis (DIVA),” Journal of Atmospheric
and Oceanic Technology, vol. 31, no. 2, pp. 515–530, 2014.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[14] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson,
“The ADMM algorithm for distributed quadratic problems: Parameter
selection and constraint preconditioning,” IEEE Transactions on Signal
Processing, vol. 64, no. 2, pp. 290–305, Jan 2016.

[15] G. Wahba, Spline Models for Observational Data. Society for Industrial
and Applied Mathematics, 1990.

[16] P. C. McIntosh, “Oceanographic data interpolation: Objective analysis
and splines,” Journal of Geophysical Research: Oceans, vol. 95,
no. C8, pp. 13 529–13 541, 1990.

[17] M. L. Elwin, “Distributed algorithms for multi-robot environmental
monitoring,” Ph.D. dissertation, Northwestern University, 2017.

[18] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “A systematic design
process for internal model average consensus estimators,” in 52nd IEEE
Conference on Decision and Control, Dec 2013, pp. 5878–5883.

[19] ——, “Worst-case optimal average consensus estimators for robot
swarms,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 3814–3819.

[20] B. V. Scoy, R. A. Freeman, and K. M. Lynch, “Feedforward estimators
for the distributed average tracking of bandlimited signals in discrete
time with switching graph topology,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), Dec 2016, pp. 4284–4289.

[21] H. Bai, R. A. Freeman, and K. M. Lynch, “Robust dynamic average
consensus of time-varying inputs,” in 49th IEEE Conference on Decision
and Control (CDC), Dec 2010, pp. 3104–3109.

[22] K. Lynch, I. Schwartz, P. Yang, and R. Freeman, “Decentralized
environmental modeling by mobile sensor networks,” Robotics, IEEE
Transactions on, vol. 24, no. 3, pp. 710–724, June 2008.

[23] H. Bai, R. A. Freeman, and K. M. Lynch, “Distributed Kalman filtering
using the internal model average consensus estimator,” in Proceedings
of the 2011 American Control Conference, June 2011, pp. 1500–1505.

[24] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proceedings of the 46th IEEE Conference on Decision and Control, Dec
2007, pp. 5492–5498.

[25] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed
robotic sensor networks: An information-theoretic approach,” Interna-
tional Journal of Robotics Research, vol. 31, no. 10, pp. 1134–1154,
September 2012.

[26] G. Battistelli, L. Chisci, N. Forti, S. Selleri, and G. Pelosi,
“Decentralized consensus finite-element Kalman filter for field
estimation,” arXiv, vol. abs/1604.02392, 2016.

[27] P. P. Brasseur, “A variational inverse method for the reconstruction
of general circulation fields in the northern Bering Sea,” Journal of
Geophysical Research: Oceans, vol. 96, no. C3, pp. 4891–4907, 1991.

[28] S. Martı́nez, “Distributed interpolation schemes for field estimation by
mobile sensor networks,” Control Systems Technology, IEEE Transac-
tions on, vol. 18, no. 2, pp. 491–500, March 2010.

[29] J. Cortes, “Distributed Kriged Kalman filter for spatial estimation,”
Automatic Control, IEEE Transactions on, vol. 54, no. 12, pp. 2816–
2827, Dec 2009.

[30] P. Dames, “Distributed multi-target search and tracking using the phd
filter,” in 2017 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), Dec 2017, pp. 1–8.

[31] X. Lan and M. Schwager, “Rapidly exploring random cycles: Persistent
estimation of spatiotemporal fields with multiple sensing robots,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1230–1244, Oct 2016.

[32] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic
exploration of distributed information,” IEEE Transactions on Robotics,
vol. 32, no. 1, pp. 36–52, Feb 2016.

[33] L. M. Miller and T. D. Murphey, “Trajectory optimization for contin-
uous ergodic exploration on the motion group SE(2),” in 52nd IEEE
Conference on Decision and Control, Dec 2013, pp. 4517–4522.

[34] R. O’Flaherty and M. Egerstedt, “Optimal exploration in unknown en-
vironments,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sept 2015, pp. 5796–5801.

[35] N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and
R. Davis, “Collective motion, sensor networks, and ocean sampling,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, Jan 2007.

[36] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and
G. S. Sukhatme, “Persistent ocean monitoring with underwater gliders:
Adapting sampling resolution,” Journal of Field Robotics, vol. 28,
no. 5, pp. 714–741, 2011.

[37] A. Kozma, C. Conte, and M. Diehl, “Benchmarking large-scale
distributed convex quadratic programming algorithms,” Optimization
Methods and Software, vol. 30, no. 1, pp. 191–214, 2015.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1989.

[39] A. Kozma, E. Klintberg, S. Gros, and M. Diehl, “An improved dis-
tributed dual Newton-CG method for convex quadratic programming
problems,” in 2014 American Control Conference, June 2014, pp. 2324–
2329.

[40] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algorithms
and data structures for massively parallel generic adaptive finite element
codes,” ACM Trans. Math. Softw., vol. 38, 2011.

[41] C. Nielsen, W. Zhang, L. Alves, N. Bay, and P. Martins, Modeling of
Thermo-Electro-Mechanical Manufacturing Processes with Applications
in Metal Forming and Resistance Welding. Springer, 2012.

[42] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Environmental esti-
mation with distributed finite element agents,” in 55th IEEE Conference
on Decision and Control, Dec 2016, pp. 5918–5924.

[43] B. F. D. Veubeke, G. Sander, and P. Beckers, “Dual analysis
by finite elements: linear and non linear applications,” University
of Liege, Tech. Rep. AFFDL-TR-72-93, 1971. [Online]. Available:
orbi.ulg.ac.be/bitstream/2268/205883/1/ST Veubeke 023.pdf

[44] B. F. De Veubeke, “Variational principles and the patch test,”
International Journal for Numerical Methods in Engineering, vol. 8,
no. 4, pp. 783–801, 1974.

[45] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and D. G. Kendall, Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed.
John Wiley and Sons, 2000.

[46] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed Voronoi
neighbor identification from inter-robot distances,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1320–1327, July 2017.

[47] M. Cao and C. Hadjicostis, “Distributed algorithms for Voronoi dia-
grams and application in ad-hoc networks,” UIUC Coordinated Science
Laboratory, Tech. Rep. UILU-ENG-03-2222,DC-210, 2003.

[48] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” in Robotics and Automation, Proceedings of
the IEEE International Conference on, vol. 2, 2002, pp. 1327–1332.

[49] A. Breitenmoser, M. Schwager, J. Metzger, R. Siegwart, and D. Rus,
“Voronoi coverage of non-convex environments with a group of net-
worked robots,” in 2010 IEEE International Conference on Robotics
and Automation, May 2010, pp. 4982–4989.

[50] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot coverage and
exploration on Riemannian manifolds with boundaries,” Int. J. Rob.
Res., vol. 33, no. 1, pp. 113–137, Jan. 2014.

[51] D. Sieger, P. Alliez, and M. Botsch, Optimizing Voronoi Diagrams for
Polygonal Finite Element Computations. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 335–350.

[52] J. R. Shewchuk, “What is a good linear finite element? Interpolation,
conditioning, anisotropy, and quality measures,” In Proc. of the 11th
International Meshing Roundtable, Tech. Rep., 2002.

[53] L. Rineau, “2D conforming triangulations and meshes,” in CGAL User
and Reference Manual, 4.7 ed. CGAL Editorial Board, 2015.

[54] D. P. Kroese and Z. I. Botev, “Spation process simulation,” in Stochastic
Geometry, Spatial Statistics and Random Fields: Models and Algorithms,
V. Schmidt, Ed. Berlin: Springer-Verlag, 2015, pp. 369–404.

Matthew L. Elwin (S’11–M’17) received a B.E.
in engineering sciences from Dartmouth College,
Hanover, NH, USA, in 2009 and a Ph.D. degree in
mechanical engineering from Northwestern Univer-
sity, Evanston, IL, USA, in 2017. He is an Assistant
Professor of Instruction in the Mechanical Engineer-
ing Department, Northwestern University, Evanston,
IL, USA, where he is affiliated with the Master of
Science in Robotics program and the Northwestern
Center for Robotics and Biosystems. His research in-
terests include multi-robot coordination; distributed

estimation and control; and mechatronics. He is a coauthor of the textbook
Embedded Computing and Mechatronics (Elsevier, 2015).

Randy A. Freeman (S’90–M’95) received a Ph.D.
in Electrical Engineering from the University of Cal-
ifornia at Santa Barbara in 1995. Since then he has
been a faculty member at Northwestern University
(Evanston, Illinois), where he is currently Professor
of Electrical and Computer Engineering. He received
the National Science Foundation CAREER Award in
1997. He has been a member of the IEEE Control
System Society Conference Editorial Board since
1997, and has served on Program and Operating
Committees for the American Control Conference,

the IEEE Conference on Decision and Control, and the IFAC Workshop on
Distributed Estimation and Control in Networked Systems. He has served
as an associate editor for the IEEE Transactions on Automatic Control and
the IEEE Transactions on Control of Network Systems. His research interests
include complex systems, nonlinear systems, distributed control, multi-agent
systems, robust control, optimal control, and oscillator synchronization.

Kevin M. Lynch (S’90–M’96–SM’05–F’10) re-
ceived the B.S.E. degree in electrical engineering
from Princeton University, Princeton, NJ, USA,
in 1989, and the Ph.D. degree in robotics from
Carnegie Mellon University, Pittsburgh, PA, USA,
in 1996. He is a Professor and the Chair of the
Mechanical Engineering Department, Northwestern
University, Evanston, IL, USA. He is director of the
Northwestern Center for Robotics and Biosystems
and a member of the Northwestern Institute on
Complex Systems. His research interests include

dynamics, motion planning, and control for robot manipulation and loco-
motion; self-organizing multiagent systems; and human-robot systems. He
is a coauthor of the textbooks Principles of Robot Motion (MIT Press,
2005), Embedded Computing and Mechatronics (Elsevier, 2015), and Modern
Robotics: Mechanics, Planning, and Control (Cambridge University Press,
2017). He is editor-in-chief of the IEEE Transactions on Robotics

