
Extending Equilibria to Periodic Orbits for Walkers using Continuation
Methods

Nelson Rosa Jr. and Kevin M. Lynch

Abstract— We present a strategy for generating period-one,
open-loop walking gaits for multi-degree-of-freedom, planar
biped walkers. Our approach uses equilibria of the dynamics as
templates, which we connect to a family of period-one walking
motions using numerical continuation methods. We define a
gait as a fixed point of the walker’s hybrid dynamics which
resides in a state-time-control space consisting of the robot’s
post-impact state, switching time (the time at which the swing
leg impacts the ground), and a finite set of design or control
parameters.

We demonstrate our approach on several physically-
symmetric biped walkers. In particular, we prove that our
approach reduces the search space for an initial gait in
the state-time-control space to a one-dimensional search in
switching time. We show that we can generates periodic motion
without resorting to splines or reference trajectories. Finally, we
compare our method to generating gaits with virtual holonomic
constraints.

I. INTRODUCTION

The automatic generation of walking gaits for bipedal
robots has been a challenging problem in the robotics lit-
erature [1], [2]. While the literature on the subject dates
back to over three decades worth of work filled with im-
pressive advancements, there is still no automated method
for generating gaits for multi-degree-of-freedom bipeds that
takes advantage of the walker’s “natural” dynamics, namely
the use of gravitational forces to help propel the swing leg
during a step. In this paper, we take a step toward solving
this problem for physically-symmetric, planar bipeds.

In our work, we consider gaits that reside in a state-time-
control space consisting of the robot’s post-impact state, a
switching time (the time of impact between the swing leg and
the ground), and a set of design or control parameters (e.g.
the physical parameters of a mechanical system, coefficients
of a forcing function, etc.). In this state-time-control space,
we define a gait as a fixed point of the walker’s hybrid
dynamics. The hybrid system is partitioned into a single
support phase and an instantaneous double support phase.
During the single support phase, the robot pivots about its
stance leg while the swing leg is able to pivot freely about
the hip. After an impact the role of the two legs are reversed.

A major challenge in automating the process of generating
gaits is finding the right combination of state variables and
design parameters that will yield a periodic walking gait.
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(a) Curved-foot walker (b) Compass-gait with torso

(c) Point-foot kneed walker (d) Humanoid walker

Fig. 1. Example of period-one gaits for various planar biped walkers. The
dots are joint centers. All gaits are walking passively downhill. The gaits
in (a) and (b) are walking from left to right, while (c) and (d) are walking
from right to left.

For many gait generation algorithms, the user has to input
a guess for these values. The algorithm then refines the
guess using standard optimization or root-finding techniques.
An algorithm that uses a guess as an input has several
drawbacks, including convergence issues if the guess is not
“close enough” to an actual gait and provides no guidelines
for making a good guess as the degrees of freedom and the
number of parameter are increased.

In our work, we eliminate this guesswork by using contin-
uation methods. Continuation methods are useful algorithms
for exploring the behavior of the system as its parameters are
varied. Within the walking literature, there are several works
where the parameters of a biped model are varied in order to
explore the effects of a parameter on a gait ([1], [3], [4]). In
each of these works, we see fixed points forming connected
components in their respective state-time-control space.

By itself, a continuation method suffers from an even
worse version of the guessing problem as it needs an actual
gait before it can find more. We get around this restriction by
using equilibria that are also fixed points as templates and use
continuation methods to “trace” their connected component
until we find a branch of fixed points with walking gaits.
When the control parameters are held constant, this approach
reduces the search space for a gait to a 1-D search problem
in switching time. Figure 1 shows a diverse set of walking
models where we started with a “standing still” equilibrium



Fig. 2. Passive gaits in the same connected component as the compass-gait walker’s equilibrium point (left-most cartoon) found with numerical continuation
methods. The final three gaits resemble overhand brachiation. The gaits above the ground are walking from left to right, below the slope from right to left,
and the walker on the vertical slope is traveling downwards.

point and successfully extended the template to a walking
gait.

A. Statement of Contributions

We show how a few topological and differential geomet-
ric concepts can significantly simplify the gait generation
problem avoiding the use of model reduction or splines to
generate gaits. Our contributions are

• An easy and reliable way to generate gaits from
an equilibrium point. We show how an equilibrium
point (our template motion) reduces the search for an
initial moving gait to a one-dimensional search in time.
In other words, the search space is independent of the
degrees of freedom and the physical parameters of the
system.

• A geometric interpretation of periodic gaits as points
on a manifold. We transform the gait generation prob-
lem from a two-point boundary value problem solved
by optimization techniques to generating a manifold
of periodic walking motions embedded in a state-time-
control space using continuation methods.

• The ability to generate open-loop gaits based on a
finite set of design or control parameters. We show
how a finite vector consisting of n state variables and k
design or control variables can be used to generate open-
loop gaits. As an example, we place a torsional spring
and motor at the hip of a three-link model (Figure 1(b))
as in [5]. The controls are then parameterized by a
spring constant and a constant torque (k = 2).

• A comparison with another gait generating algo-
rithm. We compare our approach to generating gaits
with virtual holonomic constraints addressing strengths
and weaknesses in both techniques.

B. A motivating example

Figures 2 and 3 illustrate our approach using the compass-
gait biped. In this model, we assume that there is an actuator
creating a constant torque at the hip joint, thus creating a
6-D state-time-control space consisting of the 4 states, a
switching time, and a constant torque value. In Figure 2,
the “standing upright” equilibrium point of the compass-gait
is successfully extended from a walking gait to overhand
brachiation over a range of extreme slopes. While the cartoon
animations give a visual idea of the robot’s motion, each gait
can also be represented as a point in a 6-D state-time-control

(a) The compass-gait model

(b) 3-D projection of the state-time-control subspace

Fig. 3. A projection of a 6-D state-time-control space for (a) the compass
gait model onto (b) the impact time, stance-leg angle, and constant torque
dimensions. Each point on the surface is a fixed point. The large black dots
are where the branch of equilibrium points (red line) of the compass-gait
intersects with the curve of passive walking gaits (green) where u = 0. A
few of these passive gaits are shown in Figure 2. The other gaits (in blue)
are powered at the hip joint. The challenge is finding the two switching
times denoted by the black dots that allow us to push off the equilibrium
branch and onto the branch that contains walking gaits.

space as shown in Figure 3(b). This figure shows a small
subset of the connected component of our template projected
onto a 3-D subspace. While the equilibrium point would form
a straight line through the space connecting the two black
dots, it eventually intersects with a set of passive solutions
(denoted in green). The points of intersection correspond
to the “short” and “long” solutions reported in [1]. These
passive gaits themselves are a part of an even larger space
of powered gaits. Using a counting argument, we expect
the dimension of the manifold to equal the number of
control variables plus the switching time as we have n = 4



constraints (the final post-impact state must equal the initial
post-impact state) and n + k + 1 = 6 freedoms yielding a
(k + 1)-dimensional set of solutions.

The main challenge is knowing when the branch of equi-
librium points intersects with the branch of walking gaits.
We outline a method for doing so in Section III.

A video presentation of this example with animations of
the gaits can be found in the accompanying video attachment.

C. Previous Work
There are several works that present techniques for gen-

erating gaits using optimization techniques [6], [7], [8],
[9], [10], [11], [12]. Optimization techniques can be used
to find gaits for an arbitrary biped model, but applying
standard optimization techniques does not take advantage
of the connected components of a walking gait [13]. While
flexible, these approaches are limited by how good the initial
guess is which varies from model to model.

The idea of using templates to mitigate the issues with
optimization techniques is not new [14], [15], [16], [17].
A key observation in this line of work is that walking is
a highly coordinated motion that does not require the full
degrees of freedom to accomplish. Many techniques that
take advantage of this insight focus on using reduced models
of lower dimension to generate gaits. The complicated task
of making a high degree-of-freedom biped walk is then
equivalent to making a lower-dimensional version of the
biped (e.g., knees and elbows are locked during a portion
of the motion) perform the same task through, for example,
holonomic constraints [18], model linearization, or a library
of motion primitives [19].

Arguably the most successful walking algorithms in the
field utilize the zero moment point (ZMP) [20] as an im-
portant component in gait generation. The ZMP is defined
as the point where the net horizontal moment is zero and
can be seen as an extreme case of model reduction based on
templates. The ZMP applies to any arbitrary robot model.
There are drawbacks to using the ZMP approach, such as
flat-footed walking, high cost-of-transport relative to human
walking, and quasi-static dynamics (which leads to poor
agility and reaction time).

Our work can be viewed as a generalization of the previous
work on simple walking models ([4], [1], [3]). These works
also search for gaits near an equilibrium point of their
respective model and have yielded invaluable insight into the
mechanics of walking. This body of work uses continuation
methods to explore the effects of various parameters, such
as ground slope, on the biped’s gait. For generating motion
sequences for animated individuals, an impressive applica-
tion of continuation methods for generating parkour motions
based on a human motion database can be found in [21]. We
complement their work by providing further insight into why
continuation methods can be an effective tool in generating
gaits even without a library of motion primitives.

D. Paper Outline
We begin in Section II with the problem statement as well

as background information that will be used throughout the

paper. In Section III, we show how an equilibrium point is
extended to a periodic walking gait. Section IV presents an
example of our techniques on various models of symmetric
biped walkers. We then conclude and discuss future work in
Section V.

II. PROBLEM STATEMENT

We are interested in finding period-one fixed points of
a multi-degree-of-freedom robot with continuous swing-leg
dynamics during the single support phase of a step and
an instantaneous impact with the ground during the double
support phase. The robot has dynamics of the form

ẋ(s) = F (x(s), u(s), λ) 0 < s < t

x+ = H(x(s), λ) s = t,
(1)

where t is the switching time when the impact occurs, λ ∈
Rk is a vector of design or control variables, x ∈ Rn is
the state of the system, x+ ∈ Rn is the state after a step,
u ∈ Rp is the forcing input, F : Rn×Rp → Rn is the swing-
leg dynamics and H : Rn×Rk → Rn is the jump map which
maps the pre-impact state to the post-impact state.

A walking gait requires that the post-impact state x0 at the
beginning of a biped’s step equal the post-impact state x+

at the beginning of the robot’s next step. This step-to-step
map can be written as a mapping G : Rn × Rk × R → Rn
such that

x+ = G(x0, λ, t) = H(x(x0, λ, t), λ), (2)

where x(x0, λ, t) is the state at time t satisfying ẋ =
F (x, u, λ) starting from the post-impact state x0.

A period-one fixed point is a point (x∗0, λ
∗, t∗) ∈ Rn+k+1

such that x∗0 = G(x∗0, λ
∗, t∗) and it resides in an (n+k+1)-

dimensional state-time-control space. The state corresponds
to the robot’s post-impact state at the beginning of a new
step and the time and controls correspond to the switching
time and design parameters, respectively.

If the map G is continuously differentiable, then the set
of fixed points

X = {(x∗0, λ∗, t∗) : G(x∗0, λ
∗, t∗)− x∗0 = 0}

will have additional local structure forming (k + 1)-
dimensional manifolds [22]. Neighboring points in X will
locally form a manifold whenever the Jacobian

J(x0, λ, t) =
[
∂G
∂x0
− I, ∂G

∂λ ,
∂G
∂t

]
, (3)

where I is the n × n identity matrix, has maximal rank n.
This follows from the implicit function theorem [22].

We will refer to fixed points (x∗0, λ
∗, t∗) ∈ X with

rank(J(x∗0, λ
∗, t∗)) = n as regular points of G. Fixed points

are called singular if they are not regular [23].
Regular points and singular points will play a central role

in transforming an equilibrium point into a walking gait.
Referring back to Figure 3, the connected component of
the compass-gait walker’s equilibrium point is comprised of
several manifolds joined together at singular points. If we
confine ourselves to just the state-time subspace as shown in



Fig. 4. A 2-D slice of Figure 3(b) at u = 0. This slice shows a projection
onto the passive subspace of the state-time-control space of the compass-
gait walker. The “points of intersection” (black dots) are singular points.
These points allow us to switch from the equilibrium branch (red) and onto
a branch with walking gaits (green).

Figure 4, the singular points are the two black dots. These
singular points allow us to switch between different branches
of fixed points on the connected component. We can generate
the connected component by using continuation methods.

To summarize, given
• a hybrid dynamical system H = (F,H) of the form (1),
• a vector of control parameters λ ∈ Rk,
• and a continuously differentiable map G satisfying (2),

use numerical continuation methods to find solutions to

G(x0, λ, t)− x0 = 0

starting from a set of isolated equilibria satisfying
(x∗eq, λ

∗, t∗) ∈ X and F (x∗eq, u
∗, λ∗) = 0.

III. GENERATING PERIODIC WALKING GAITS IN THE
STATE-TIME SUBSPACE

We now briefly review how continuation methods work
and then proceed to show how our template motion, an
equilibrium point, can be extended to a walking gait with
a nonzero step size in the state-time subspace.

A. Numerical Continuation Methods

Continuation methods are useful numerical tools for ex-
ploring bifurcations and generating implicitly defined man-
ifolds M(x, y) = 0. For us, these manifolds will consist
of fixed points of our step-to-step map G. While multi-
parameter continuation methods exist [24], we will focus
on generating implicitly defined curves in an (n + 1)-
dimensional subspace which will be the case later on in
this section. This assumption is not too restrictive as we can
fix k variables in our state-time-control space and apply a
numerical continuation method in the (n + 1)-dimensional
subspace. This is what we did to generate the surface in
Figure 3(b).

The premise behind numerical continuation methods is
that given a point (a, b) ∈ Rn×R, a curve c : R→ Rn+1 that
goes through it, say at c(0), and a continuously differentiable
map M : Rn+1 → Rn, the solution to M(c(0)) = 0 has
geometric information that will allow us to find the next point

Algorithm 1 Euler-Newton predictor-corrector algorithm
Require: c0 such that G(c0) = 0 and a step size h.

Initialize the array of fixed points c.
c[0] = c0
for i := 1..N do

Prediction Step:
Compute ċ by solving ∂G

∂c (c[i− 1])ċ = 0 and ||ċ|| = 1.
z = c[i− 1] + ċh
Correction Step:
Solve for H(z) = 0 and ċT (z − c[i − 1]) = h using
Newton’s method.
c[i] = z

end for
return the solution curve c.

on the curve such that M(c(s)) = 0. If we differentiate M
with respect to its inputs and evaluate at s = 0

∂M

∂c
(c(0))ċ(0) = 0,

then we can obtain the tangent space at c(0) by solving for
the null space of ∂M

∂c (c(0)) ∈ Rn×(n+1). The tangent to the
curve will then be a linear combination of the vectors in the
tangent space. Furthermore, if c(0) is a regular point, then
the implicit function theorem tells us that there will only be
one tangent vector at the point c(0) and that there exists a
small neighborhood of fixed points near c(0) that all lie on
the same curve. In order to be able to switch to a different
branch of the connected component, we require a singular
point.

The algorithm used to generate the gaits in this paper is
a predictor-corrector algorithm known as the Euler-Newton
algorithm [23]. Algorithm 1 is a barebones version of the
algorithm. Geometrically, this algorithm defines a hyperplane
a distance h away from the current solution where the search
for the next point on the curve takes place; the hyperplane is
normal to the tangent of a known solution. Next, a prediction
step selects a point on the plane as the initial guess and a root
finding method iteratively refines the guess until the point is
again back on the curve.

B. Extending equilibrium points in the state-time subspace
with parameters held constant (n > k = 0)

A major drawback with continuation methods is that they
are only useful once a point on the curve is known. We
show how equilibrium points can be used to bootstrap the
process and can be extended to periodic motions with a net
displacement whenever (x∗eq, λ

∗, t∗) is a singular point. Our
approach relies on the following assumptions:

EH1 Equilibria are isolated from each other.
EH2 The size of the k-dimensional design parameter space

pertaining to λ is zero, so that a fixed point is fully
specified by the (x0, t) space.

EH3 There is only one impact event and it occurs at time
t > 0.



EH4 There exists an equilibrium point (x∗eq, t
∗) ∈ X such

that F (x∗eq, u(t∗)) = 0 for all t∗ with walking gaits
with nonzero step length in its connected component.

EH5 The forcing function and the initial jump are indepen-
dent of t, so that ∂u

∂t ,
∂x0

∂t = 0.
Equilibrium hypotheses EH1, EH2, and EH3 are meant to

avoid special cases. For example, we require k = 0 in EH2
to avoid branches that might only contain gaits with zero
step sizes. As a simple case, consider the compass gait at an
equilibrium point in X . If, in addition, the link’s length was
a design parameter, then a useless branch where the length
grows without bound exists at every time step while still
remaining at the equilibrium. A similar reasoning is behind
EH1, but in this case the useless branch will be a different
equilibrium point.

Since we assume that k = 0, we will refer to the
reduced state-time space (x0, t) with an appropriately defined
Jacobian J(x0, t) =

[
∂G
∂x0
− I, ∂G

∂t

]
.

EH3 eliminates multiple time-based impact events such
as knee strike commonly found with kneed walkers. Our
results can be extended to handle multiple switching times
(Figure 1(c) is an example), but because of space constraints
we only pursue one switching time.

One limitation of our analysis is that we cannot prove that
there always exists an equilibrium point that will connect to
a set of walking gaits. Instead, we take it as an assumption
(EH4) and prove that if such an equilibrium exists, our
approach will theoretically find walking gaits without fail.

In the remainder of this section, we prove that
• equilibria that satisfy EH4 have a connected component

of nonzero length,
• singular points occur only when ∂G

∂x0
is not full rank,

• and our search for an initial gait is always one-
dimensional regardless of the number of states.

We now show that equilibria have a connected component
of nonzero length.

Proposition 1: If F (x∗eq, u(s)) = 0 for all time s, then
∂G
∂t = 0.

Proof: Differentiating G with respect to t and using
∂u
∂t = ∂x0

∂t = 0 from EH 5, we get

∂G

∂t
(x∗eq, t

∗) =
∂H

∂x
◦ (

∂x

∂x0

∂x0
∂t

+
∂x

∂u

∂u

∂t
+
∂x

∂t
) ◦ (x∗eq, t

∗)

=
∂H

∂x
F (x∗eq, u(t∗)) = 0

Corollary 1: If (x∗eq, t
∗) ∈ X is a period-one fixed point

such that x∗eq is an equilibrium point of F , then there will
always exist a “trivial” branch of fixed points (x∗eq, t

∗) for
all values of t∗ ∈ R.
This result follows from Proposition 1 as the null space
of J(x∗eq, t

∗) will always have a vector that points in the
switching-time coordinate direction.

If (x∗eq, t
∗) is a regular point, then the trivial branch will

be the only branch of fixed points in a small neighborhood
of (x∗eq, t

∗). Singular points do not have this restriction.

(a)

Fig. 5. The det( ∂G
∂x0
− I) for the compass-gait walker. The roots of

the function correspond to the smallest nonzero switching times where the
connected component branches off of the equilibrium branch of gaits and
onto a passive branch of gaits.

In order for (x∗eq, t
∗) to be a singular point, we need

rank(J(x∗eq, t
∗)) < n. From inspection of J this means that

Corollary 2: (x∗eq, t
∗) is a singular point if and only if ∂G

∂x0

has an eigenvalue of 1.
It is very easy to compute whether or not a singular point

exists within a certain interval t ∈ [a, b] by simply solving
det
(
∂G
∂x0
− I
)

= 0. As a special case, if the linearized

dynamics of (1) has the form Φ̇(s) = AΦ(s) where Φ = ∂x
∂x0

is the linearized dynamics about the equilibrium point and
A = ∂F

∂x (xeq, u) is a constant n × n matrix, then singular
points occur whenever

det

(
∂H

∂x
eAt − I

)
= 0, (4)

where eAt is the matrix exponential. The only parameter that
varies in this equation is t.

We have now reduced the problem of finding an initial gait
from a potentially (n + k + 1)-dimensional search problem
to a one-dimensional search problem that is independent
of the number of states n and the number of parameters
k. If the connected component of an equilibrium point
contains any walking gaits, we can find the corresponding
branch by searching for singular points on the trivial branch
of fixed points. This is equivalent to finding the root of
det( ∂G∂x0

(x∗eq, t)). We can easily visualize the zeros of this
function as a function of t (see Figure 5).

IV. EXAMPLES

A. Revisiting the compass-gait, two-link model

As a first example of our method, we start with the
compass-gait walker, which has n = 4 states. The details of
the model can be found in [1]. The equilibrium point we are
interested in is the upright, folder over configuration shown
in the left-most animation of Figure 2. The paper explores
passive gaits, so there are no control or design parameters
(k = 0). We search for the first two singular points with a
switching time greater than zero. This requires solving for



the roots of (4) as shown in Figure 5. The matrices of interest
for solving (4) are

∂F

∂x
(x∗eq, λ

∗) =

 0 0 1 0
0 0 0 1

− g(β2(µ+1)+2β(µ+1)+µ+2)

αβ((β+1)2µ+1)

(β+1)g(βµ+β+µ+2)

αβ((β+1)2µ+1)
0 0

− (β+1)g

α((β+1)2µ+1)

g(βµ+β+µ+2)

α((β+1)2µ+1)
0 0


∂H

∂x
(x∗eq, λ

∗) =

 0 1 0 0
1 0 0 0

0 0 − β+1

µ(β+1)2+1

µβ2+2µβ+β+µ+2

µ(β+1)2+1

0 0 − β

µ(β+1)2+1

(β+1)(βµ+µ+1)

µ(β+1)2+1


Solving for these roots using the common parameters of g =
9.81, α = 0.5, β = b

a = 1, and µ = mH
m = 2 yields

switching times of t ≈ 0.62 s and t ≈ 0.68 s (see Figure 5).
A similar analysis has been done before on the compass

gait, but to our knowledge we are the first to use a geometric
framework that scales without any dependence on the degrees
of freedom. As long as there is only one switching time,
nothing about our framework changes as n is increased. The
same steps are repeated for finding gaits of other walking
models. After finding the two singular points, we can apply
Algorithm 1 to trace the connected component from these
branch points. The results of the continuation method can
be seen earlier in Figures 2 and 3.

B. A more complicated model

We have also tested our technique on a nine-link planar
model which has a 19-dimensional state-time space (18 state
variables and one switching time) consisting of two legs, two
thighs, two arms, two forearms, and a torso. A representative
gait can be seen in Figure 1(d). For this model we have
taken the sagittal-plane parameters from [25]. There are no
knee stops and all links are free to rotate the full 360◦. As
before, we start with our template configuration and search
for singular points. One singular point occurs at t ≈ 0.49 s.
Unlike the compass gait, the switching times for this model
do not come in pairs. Then we apply continuation methods to
generate the 1-D curve of passive solutions. While we were
expecting human-like walking motions, the gaits resemble
more of a bipedal bird-like, flamingo gait (we could also
claim that this is a useful gait for a person walking downstairs
backwards!) Another odd behavior about this gait is that
although it has two arms, they only swing in phase with
each other. We leave it for future work to extend the nine-
link model to a human-like gait using a similar approach to
that used for kneed walkers [26]. But even for a complicated
walking model, the search space is only 1-D and once the
singular points are found we are able to generate periodic
motions with ease.

C. Comparing our approach to the use of virtual holonomic
constraints for generating gaits for a three-link walker

We now examine the three-link model presented in [5]
(Figure 1(b)). Details of the model can be found therein. For
this biped, k = 2 and λ = [κ, u], where κ is torsional spring
constant and u is a constant torque applied at the hip joint.
The purpose of adding controls was to induce stable, periodic
walking on level ground using virtual holonomic constraints
(VHC). The paper also gives a stabilizing controller for the

Fig. 6. The 3-D surface of solutions projected onto the switching time
(t)-spring constant (κ)-torque (u) plane for the compass-gait biped with
torso. The red dot is the equilibrium point that generated all of the fixed
points, green dots are uphill gaits, and blue dots are downhill (passive and
actuated) gaits.

biped to use, while this paper assumes a stabilizing controller
is given. While none of the gaits we found for the three-
link biped are open-loop stable, we note that our approach
generates a manifold of bipedal gaits that complements the
controller in the paper allowing for a decoupling of the gait
generation problem from the gait stabilization problem. This
is in contrast to the output of the gait generator produced
by the VHC function which does not output a periodic gait,
but a motion with a normed difference of 10−3 between
two consecutive post-impact states (the paper refers to the
output as a “quasi-periodic” gait). It is up to the controller
to further reduce the error. Thus the VHC gait generator is
tightly coupled to the controller.

Furthermore, searching for gaits using VHC relies on
optimization methods to search for a gait over the paper’s
state-control space. One of the gaits took about 3 s to find
and the gait was found using initial conditions from work
on a previous three-link walker. It is not obvious how the
VHC gait generation algorithm can scale up to the nine-
link humanoid system with the initial guess, coordinating
function, and reliance on an external function to make the
motion periodic being an integral part to the algorithm’s
success.

On the other hand, our approach has specific instructions
on how to generate periodic gaits. All of the gaits shown in
this paper have a normed error between post-impact states
of at most 10−8. When searching for gaits for the compass-
gait model with torso, the singular points in the state-time
subspace occur at t ≈ 0.66 s and t ≈ 0.69 s. After
locating these switching times, we chose to extend the longer
period gait into the state-time-control space and ultimately
generated 67,600 fixed points. Figure 6 shows a selection of
these points. We used a step size of 1

10 spanning each of
the corresponding direction in the time-controls parameter
space of switching time, spring constant, and torque constant.
The values for the control parameters had ranges of t∗ ∈
[0.68, 0.82], κ∗ ≈ ±2.47, and u∗ ≈ ±2.12. We ran our code
in Mathematica on two cores. The total time in Mathematica
took 2,071.6 s at an average of about 33 fixed points per
second on a 3.06 GHz Duo Core 2 processor with code



running on both cores in parallel. We generated the gaits
using the procedure of Algorithm 1 by holding 2 variables
fixed in the time-controls subspace and varying the third.

V. CONCLUSION

Generating periodic walking gaits for an arbitrary biped
model is still a challenging problem in the walking commu-
nity. We present a robust method for generating a family of
walking gaits using numerical continuation methods based on
the connected component of one (trivial) equilibrium point
of an multi-degree-of-freedom, planar, bipedal robot (that of
standing still).

Our approach differs from other gait generation algorithms
in that we transform the problem of gait generation to gen-
erating a connected surface (or level set) of periodic walking
gaits. The major advantage is that we give an initial stance
for finding nearby walking gaits regardless of the degrees of
freedom in the model. We prove that the complexity of the
search space only grows with the periodicity of the gait. We
also preserve the “natural” dynamics of the hybrid system
without resorting to model reduction or splines and easily
incorporate control and design parameters when generating
periodic walking motions.

As examples, we showed how our algorithm can gener-
ate numerous gaits for the compass-gait model, three-link
model with legs and torso, and a nine-link humanoid model
complete with elbows and knees. Additionally, in our three-
link example, we compared our approach to generating gaits
to that of using virtual holonomic constraint comparing the
strengths and weaknesses in each approach.

Two drawbacks with our approach are that the gaits found
are unstable (except for the compass gait) and may not be
optimal subject to a user-defined criterion. The choice of
controller will impact the stability of a gait. The gaits we
found in our examples used zero or a constant torque as
input, but as long as one can compute the derivative of
the step-to-step map with respect to their controls, then our
method is still applicable. However, further extensions are
needed to find optimal gaits. Away from a singular point,
fixed points form manifolds and finding optimal points on a
manifold is a well-studied problem.

For future work, we plan to show how to extend our
approach to 3-D and expand on how design parameters can
easily be incorporated by making simple modifications to the
Recursive Euler-Newton and Composite Rigid Body algo-
rithms thus addressing the issue of having to take derivatives
of a trajectory with respect to the parameters by automating
the process algorithmically.
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