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and Acceleration Analysis of Contact Between Three-Dimensional
Rigid Bodies,” ASME J. Appl. Mech., 63(4), pp. 974–984].
[DOI: 10.1115/1.4043547]

1 Introduction
When a three-dimensional rigid body (object 1) is in single-point

contact with another rigid body (object 2), the configuration of
object 1 relative to object 2 is five dimensional: the six degrees of
freedom of object 1 subject to the single constraint that the distance
to object 2 is zero. This five-dimensional configuration space can be
parametrized by the two coordinates U1= (u1, v1) describing the
contact location on the surface of object 1, the two coordinates
U2= (u2, v2) describing the contact location on the surface of
object 2, and one coordinate ψ describing the angle of “spin”
between frames fixed to each body at the contact point. Collec-
tively, the contact configuration is written as q= (u1, v1, u2, v2, ψ)
(see Fig. 1).
“Contact kinematics” refers to equations relating the relative

motion between the objects to the evolution of q. The velocity of
one object relative to the other can be written in terms of the
linear velocity V= (Vx, Vy, Vz) and the angular velocity ω= (ωx,
ωy, ωz) at a frame at the current contact, where Vz= 0 is required
to maintain contact. The “first-order” contact equations relate
(V, ω) (where Vz= 0) to q̇. The “second-order” contact equations
express q̈ in terms of the relative linear and angular accelerations
(a, α), given an initial state where the first-order contact condition
Vz= 0 is satisfied and a choice of a in the two-dimensional space
of linear accelerations that maintain the contact.
These first- and second-order contact kinematics are fundamental

to planning and control of robot motions in contact. Such motions
are sometimes called “roll-slide” motions. The specialization of
these equations to the case of no sliding is useful for manipulation
tasks involving rolling.
Second-order contact equations were first published in Ref. [1],

based on the work in Sarkar’s Ph.D. thesis [2]. These equations
generalized Montana’s first-order contact kinematics in Ref. [3]

and the partial results on second-order contact kinematics in
Ref. [4]. Sarkar et al. then restated the second-order contact kine-
matics in Refs. [5,6], where they were used in the context of
robotic manipulation.
Each of the statements of the second-order contact kinematics

in Refs. [1,2,5,6] is slightly different, but each contains errors,
including sign inversions. Other than a journal typesetting error,
the most correct version of the equations is in Ref. [1], which con-
tains only the sign inversions. Given the importance of these
equations to robot motion planning and manipulation (the
papers [1,2,5,6] have been cited hundreds of times according to
Google Scholar) and our own work, we present the corrected
equations.

2 Problem Statement
The contact coordinates for each object i∈ {1, 2} are parame-

trized by fi :Ui → R3 : (ui, vi) 7! (xi, yi, zi) expressed in a frame
fixed to the body. It is assumed that fi is continuous up to the
third derivative (class C3) so that the local contact geometry
(contact frames associated with the first derivative of fi, curvature
associated with the second derivative, and derivative of the curva-
ture associated with the third derivative) is uniquely defined. For
details on other definitions, see Ref. [1].
With these definitions, the problem can be stated as follows:

given the current state (the relative configurations of the objects
and their relative velocity (V, ω) satisfying the first-order contact
condition) and their relative acceleration (a, α) satisfying the
second-order contact condition, find the contact accelerations
q̈ = (ü1, v̈1, ü2, v̈2, ψ̈).

3 Second-Order Contact Kinematics Derivation
Equations (1), (2), and (3) correspond to Eqs. (39), (41), and (42),

respectively, in Ref. [1]. We have rederived and verified these equa-
tions, which represent five equality constraints relating the evolu-
tion of q̈ and (a, α) when az satisfies the second-order condition
for maintaining contact given by Eq. (45) in Ref. [1].
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Fig. 1 Objects 1 and 2 are in contact, but they are shown sep-
arated for clarity. The surfaces of objects 1 and 2 are parame-
trized by (u1, v1) and (u2, v2), respectively. At the point of
contact, the unit x1- and x2-axes of the coordinate frame {i} are
in the direction of increasing ui (and constant vi) and increasing
vi (and constant ui), respectively, and the contact normal n is the
cross product of x1 and x2. Rotating frame {2} by ψ about the
n-axis of frame {1} brings the x1-axis of the frames {1} and {2}
into alignment.
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In these equations, Gi is the metric tensor of object i, σi =����������
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where g11,i and g22,i are the diagonal entries of Gi, and

Wi comprises the velocity product terms [u̇2i , u̇iv̇i, v̇
2
i ]

T . The matrices
Γi, Li, �Γi, �Li, ��Γi, and ��Li describe the local contact geometry as derived
from fi in Ref. [1], and the matrices E1 and Rψ are defined as
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0 −1
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− sinψ − cosψ

[ ]
The corrected derivation of the contact kinematics begins here. Rear-
ranging Eqs. (1) and (2) yields
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Combining Eqs. (4) and (5) into a single equation yields
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This is equivalent to Eq. (43) of Ref. [1] except the two boxed terms
are preceded by a minus sign in the corrected equations. The fifth
equation for ψ̈ is derived by rearranging Eq. (3)
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where the minus sign on the left of the boxed term did not appear in
Eq. (44) in Ref. [1].

4 Example: A Sphere Rolling on a Sphere
Consider the example of a small sphere (object 1) rolling without

sliding on a larger sphere (object 2), as shown in Fig. 2. The spheres
i∈ {1, 2} are parameterized by

fi:Ui → R3:(ui, vi)

7! (ρi sin(ui) cos(vi), ρi sin(ui) sin(vi), ρi cos(ui)) (9)

where the “latitude” ui satisfies 0 < ui < π and the “longitude” vi sat-
isfies −π< vi< π.
Object 2 (the large red sphere) remains fixed in space while

object 1 (the small blue sphere) rolls on it. To ensure rolling, the rel-
ative linear velocity at the contact satisfies V= 0 and the linear
acceleration a satisfies the three constraints given in Eq. (60) of
Ref. [1]: one constraint to maintain contact and two constraints
that prevent slip. Relative velocities and accelerations are defined
as the motion of the contact frame on object 1 relative to the
contact frame on object 2.

Fig. 2 Small blue sphere: the rolling object 1. Large red
sphere: the stationary object 2. From both initial configurations,
object 1 (the small sphere) is made to roll on the equator of
object 2 (the large sphere) by rotating about the downward-
pointing axis in the contact tangent plane at all times.
(a) Initial configuration qo= (π/2, 0, π/2, 0, 0). The (u2, v2) repre-
sentation of an example point on the surface of object 2 is
shown. (b) Initial configuration q0= (π/4, 0, π/2, 0, 0).
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Object 1 is made to roll at a constant speed along the “equator” of
object 2 by choosing (ωx, ωy, ωz) = (ω, 0, 0): object 1 always rotates
about the downward-pointing x1-axis of frame {2} in the tangent
plane of the contact.

4.1 Instantaneous Solution. Consider the case where the
initial configuration is q0 = (π/2, 0, π/2, 0, 0) as shown in
Fig. 2(a). From the first-order kinematics in Ref. [1], we can
solve for the initial contact velocities

q̇0 = (0, ρ2ωk1, 0, −ρ1ωk1, 0) (10)

where k1= 1/(ρ1+ ρ2). Using the initial contact state (q0, q̇0), the
controls (αx, αy, αz)= (0, 0, 0), and the rolling assumptions (vx, vy,
vz)= (0, 0, 0), we solve for (ax, ay, az) to satisfy the second-order
rolling conditions (Eq. (60) of Ref. [1]) and the initial coordinate
acceleration q̈0. For both the original equations (43) and (44) in
Ref. [1] and the corrected equations (7) and (8), we get

q̈0 = (ü1, v̈1, ü2, v̈2, ψ̈) = (0, 0, 0, 0, 0) (11)

The v1 and v2 coordinates change linearly with time while all other
contact coordinates remain constant, as would be expected for
rolling along the equators. The original contact kinematic equations
give correct answers when the boxed terms in Eqs. (7) and (8) are
zero.
For the initial configuration in Fig. 2(b), however, everything is

the same except object 1 is tilted by π/4, i.e., the initial configuration
is q0 = (π/4, 0, π/2, 0, 0). According to the first-order kinematics in
Ref. [1]

q̇0 = (0,
��
2

√
ρ2ωk1, 0, −ρ1ωk1, ρ2ωk1) (12)

where k1= 1/(ρ1+ ρ2). Solving the corrected equations (7) and (8),
we obtain

q̈0 = (ü1, v̈1, ü2, v̈2, ψ̈) = (k2, 0, 0, 0, 0) (13)

where k2 = ρ22ω
2/(ρ1 + ρ2)

2. As expected, u2 remains constant
(contact remains on the “equator” of object 2) as v2 (the “longi-
tude”) changes with time. On the other hand, Eqs. (43) and (44)
in Ref. [1] yield
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The nonzero value of ü2 shows that the contact point incorrectly
accelerates away from the equator of object 2.

4.2 Simulation. The errors in the original equations are clearly
demonstrated by simulation. Figure 3 shows the results of numerical
simulations of the original second-order kinematics from Ref. [1]
and the corrected equations in this paper for ω= 2.5, sphere radii
ρ1= 2 and ρ2= 3, and the initial configurations shown in Fig. 2.
A video of these simulations is available as Supplemental
Material on the ASME Digital Collection.
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Fig. 3 Simulated second-order rolling trajectories with the orig-
inal kinematics (Ref. [1]) shown by the dotted lines and the cor-
rected kinematics shown by the solid lines. Note that u2 and v̇2
should be constant for both (a) and (b). The original and corrected
kinematics yield the same results in (a) because the incorrect
terms in theoriginal kinematicsarezero, justas theyare in thecor-
rected kinematics. The errors in the original kinematics become
clear in the simulation in (b). (a) Simulation starting from qo=
(π/2, 0, π/2, 0, 0). (b) Simulation starting from q0= (π/4, 0, π/2, 0, 0).
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