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Abstract
Research into the neural basis of decision making sug-
gests that animals engage in habit- or plan-based action
selection. The existence of these two modes of action
selection raises an additional problem: how should an-
imals arbitrate between them to efficiently allocate their
time and computational resources? Here, we use a nat-
uralistic task, spatial planning of a prey evading a preda-
tor in environments with varying complexity, to investigate
how the arbitration between these decision making sys-
tems should be done. We identify a key signature of com-
plex environments where planning becomes imperative—
transitions between poorly and highly connected regions.
We suggest an efficient approach, based on environmental
connectivity, that switches between plan- and habit-based
control during a task. This approach provides a unifying
account of experimental data that shows vicarious trial and
error at high cost choice points, as well as increased theta
coherence between the hippocampus and the prefrontal
cortex at transitions from closed to open regions—both
situations where there is a transition in spatial connectiv-
ity.
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Introduction
Studies of animal decision making reveal two distinct systems:
habit- and plan-based action selection (Daw, Niv, & Dayan,
2005; Keramati, Dezfouli, & Piray, 2011). These two systems
have primarily been associated with the lateral striatum and its
dopaminergic afferents for habit (Yin & Knowlton, 2006), and
the interaction between the hippocampus and the prefrontal
cortex (PFC) for planning (Ito, Zhang, Witter, Moser, & Moser,
2015; Schmidt, Duin, & Redish, 2019). Prior research into the
neural basis of planning in mammals has been related to the
phenomena of nonlocal spatial representation in hippocampal
activity through vicarious trial and error (VTE) (Johnson & Re-
dish, 2007), and replay (Pfeiffer & Foster, 2013). While replay
happens more frequently at the start of a trial and at the re-
ward port (Mattar & Daw, 2018), VTE, which coincides with
pronounced theta and gamma rhythms, has been shown to
occur at high cost choice points. It has been suggested that
an increase in theta coherence between the hippocampus and
PFC is needed to sort through options as the hippocampus
imagines potential outcomes (Benchenane et al., 2010). In-
terestingly, the coherence between the hippocampus and the
PFC increases as rodents transition from a closed arm to an
open area (Adhikari, Topiwala, & Gordon, 2010). Both the
phenomena of VTE, and the modulation of theta coherence
within trials, suggests that animals switch back and forth from
habit- to plan-based action selection continuously.

Here, we propose a formalization that identifies high cost
choice points, and accordingly arbitrates between habit- and
plan-based action selection in dynamic and complex environ-
ments that model predator-prey interactions.

Methods
In both habit- and plan-based action selection, action choices
are dependent on the current state of the animal (location of
the prey and the predator). The prey’s knowledge about the
current state allows it to associate a given outcome with an
action, enabling it to predict long-term reward. The habit so-
lution to the problem of long-term reward prediction (“model-
free” (Schultz, Dayan, & Montague, 1997)) simply assigns a
value to an an action (or an action sequence) based on prior
experience. Conversely, the planning solution (“model-based”
(Dolan & Dayan, 2013)) relies on an ’action-outcome’ knowl-
edge structure to generate action sequences by simulating fu-
ture states and their expected outcomes.

To study the arbitration of habit- and plan-based action se-
lection in a dynamic, ethologically relevant, and naturalistic
spatial navigation task, we used the formalization of reinforce-
ment learning theory (Sutton & Barto, 2018). We created a
survival task by implementing a simulated prey and predator
both acting in a 15×15 gridworld. The aim of the prey was
to get to a safety location (analogous to a burrow) while be-
ing aggressively pursued by a predator, which is on average
1.5× faster (Elliott, Cowan, & Holling, 1977; Hedenström &
Rosén, 2001). The prey was configured to have habit-based
action selection and plan-based action selection with a preset
number of states that it could forward simulate (5000). We
generated naturalistic environments by adding randomly gen-
erated obstacles until a predetermined level of clutter density
was reached (Fig. 1B1–B3). Both the prey’s and the preda-
tor’s visual range was limited by the presence of occlusions.
If an occlusion existed along a line between the prey and the
predator then they could not see each other.

For this particular dynamic spatial navigation task, habit-
based action selection exploited past action sequences that
resulted in survival for a given environment. In real life, this
would occur through trial and error over the lifetime of the
animal or over evolutionary time; here following past prac-
tice (Daw et al., 2005) we obtain these trajectories from plan-
based action selection. An action from this set was proba-
bilistically chosen based on prior implementation outcomes.
In other words, an action sequence was more likely to be
chosen if it reliably resulted in survival when blindly followed



(Fernández & Veloso, 2006). In contrast, with plan-based ac-
tion selection, within the imagination of the prey each virtual
action was evaluated based on the virtual action’s possible
outcomes. The prey generated action sequences in imagina-
tion using the partially observable Monte-Carlo planning al-
gorithm, which combines a sample-based approach to belief
state update and to the tree of decisions the prey has at each
state (Silver & Veness, 2010).

Results
Under pure plan-based action selection, in environments with
very little clutter (entropy < 0.4), the predator speed and pur-
suit strategy restricts the prey’s survival rate (Fig. 1A). As
entropy increases to midrange levels (entropy 0.4–0.6), the
prey’s survival rate reaches its maximum (Fig. 1A). As entropy
further increases (entropy > 0.6), both the effective size of the
environment, and the number of possible escape routes to the
safety position decreases. This in turn causes survival to be
dependent on both the initialization of the environment, and
the predator start location (n = 5) (Fig. 1A, B3).

Notably, if we look at all the trials in which the prey suc-
ceed in reaching the safety position to create the set of suc-
cessful policies, referred to as “success paths”, we observe
that in both low and high entropy environments success paths
are highly stereotypical (Fig. 1B1, B3). In low entropy environ-
ments these emergent successful action sequences resemble
the wall-following behavior—or thigmotaxis—commonly ob-
served in rodents in open-field tests. In high entropy environ-
ments, the amount of clutter constricts the profusion of suc-
cess paths to one or two. The low spread of success paths in
both low and high entropy environments enables habit-based
action selection to perform at a level that is statistically indistin-
guishable from plan-based action selection (Fig. 1A). In con-
trast, at midrange levels of clutter the prey’s survival strategy
becomes less stereotyped, indicated by the increase in the
number and spread of viable paths (Fig. 1B2). The spatial
distribution of occlusions in these environments enables the
prey that uses plan-based action selection to exhibit complex
and flexible behaviors that strategically deploy occlusions to
escape from the predator. This in turn causes habit to perform
much worse than planning, since actions are not re-valuated
under habit-based control (Fig. 1A).

The stereotypy seen in the resulting policy of the prey in low
entropy environments suggests that the predator will employ
a competing strategy that is similarly dependent on environ-
mental connectivity. Complementary to our analysis of prey
success paths, we quantified success paths for the predator
by compiling a set of policies that resulted in successful prey
capture (Fig. 1B4). Interestingly, these trajectories are simi-
lar to those observed in pursuit tasks in open environments
with primates (Yoo, Piantadosi, & Hayden, 2018), and seem
to arise as a result of easy access to predicted prey locations.

To formalize this pattern, we quantified the connectedness
of the environment cells through eigenvector centrality (eigen-
centrality), which represents the weighted sum of direct con-
nections through actions to and from a cell, as well as indirect

connections of every length (Bonacich, 2007) (Fig. 1C). The
stereotypical success paths employed by a prey that forward
simulated 5000 states ahead are along cells of low eigencen-
trality. Conversely, the predator success paths, independent
of its initial location, are more spatially distributed, and fre-
quently occupy cells of high eigencentrality, which allows easy
transitions to neighboring regions.

The increased spread of success paths in environments
with mid-levels of clutter, and the corresponding emergence
of complex behaviors, appears to be related to the distribu-
tion of eigencentrality. Unlike low entropy environments, which
have a region of high eigencentrality in the center that ta-
pers off in all directions away, midrange entropy environments
exhibit adjacent clusters of highly and poorly connected re-
gions (Fig. 1C, D). In such environments, the clustered na-
ture of the eigencentrality forces the prey to transition from a
relatively protected area to an open area. It is at this transi-
tion region that planning becomes imperative, since the prey
has to account for the current predator location with respect
to the occlusions to safely navigate exposed regions to the
safety position (Fig. 1D). Preliminary support for this hypoth-
esis is found in the pattern of nonlocal hippocampal spatial
representations that sweep in front of rodents at high-cost
choice points (Johnson & Redish, 2007), where there is a
sharp change in eigencentrality (Fig. 1E). Given the success
of pure habit-based action selection in both low and high en-
tropy environments, we implemented a hybrid controller that
uses habit-based action selection in low eigencentrality re-
gions, and switches over to plan-based action selection at
transition points to high eigencentrality regions.

At the start of an episode the control was initially given to
habit. After each habit-based action (execution from a chosen
policy (see Methods)), the prey compared the eigencentrality
and the gradient of the eigencentrality at its current location to
the next location that the policy prescribes. If both the eigen-
centrality and the eigencentrality gradient increased along the
habitized action sequence, the control was transferred over to
planning where the prey forward simulated 5000 future states
prior to choosing an action. During plan-based action selec-
tion, similar to habit-based control, the prey compared the
eigencentrality and the gradient of the eigencentrality at its
current location to all the possible subsequent locations (e.g.,
not an occlusion, and not a wall). Switching to habit-based
control occurred if the eigencentrality decreased and the ab-
solute value of the gradient of eigencentrality increased.

Using the hybrid controller, in environments with low spatial
eigencentrality clustering (low and high entropy) control was
rarely transferred over from habit to planning (Fig. 1F). Con-
sistent with our previous findings (Fig. 1A), in these environ-
ments, pure habit-based, pure plan-based, and hybrid con-
trol methods performed similarly (Fig. 1G; One way ANOVA
P = 0.71). In environments that had high spatial clustering
of eigencentralities (mid entropy), plan-based action selection
was engaged more often (Fig. 1F). In these environments,
pure habit-based action selection performed much worse than
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Figure 1: (A) Mean ± s.e.m (n = 20) of survival rate as a function of clutter level at 5000 states forward simulated (teal solid
line). Mean ± s.e.m (n = 20) of survival rate as a function of clutter level for prey that rely on habit-based action selection (pink
dashed line). There is no significant difference in survival rate between prey that uses habit and plan-based action selection at
low (0.0-0.3) and high (0.7-0.9) entropy (One-way ANOVA Low: P = 0.15, High: P = 0.52, Mid: P < 10−8). (B1–B3) Heatmaps
of all action sequences taken by the prey that resulted in prey survival at 5000 states forward simulated, with color density
proportional to action frequency. (B4) Heatmap of all action sequences taken by the predator that resulted in predator success
(capture of prey), with color density proportional to action frequency. (C) Example environments and their eigencentralities and
eigencentrality gradients. Color density of each metric proportional to the metric. Transition region from low to high eigencentrality
based on change in gradient and change in eigencentrality value are shown by the red box. In our hybrid ’planning+habit’ strategy,
this transition region corresponds to a change in behavioral strategy from habit based (solid teal line) to planning (dashed line).
(D) Spatial autocorrelation (global Moran’s I) of the environment eigencentrality. Higher spatial autocorrelation indicates that the
low and high values of environment eigencentrality are more spatially clustered (Mann Whitney U test with Bonferroni correction
Low-Mid: P< 10−6, Mid-High: P< 10−5, Low-High: P> 0.05). The horizontal line corresponds to the mean, the shaded regions
correspond to the s.e.m., and the boxes correspond to the 95% confidence interval of the mean. The line extending from the
box depicts the range of the data. (E) Multiple T-maze overlaid with eigencentrality and eigencentrality gradient. Color density
proportional to the metric. Red box indicates the “choice” point where the rat pauses. Johnson & Redish, 2007 showed that the
neural representation (reconstruction on the right) moved ahead of the animal (white circle) while it paused at the choice point.
(F) Average percent time spent in decision making regime (habit vs planning) when environments are grouped based on their
spatial autocorrelation of eigencentrality. Low corresponds to the bottom 25%, which is largely made up low and high entropy
environments. High corresponds to the highest 75%, which is largley made up mid-entropy environments. The error bars indicate
± s.e.m. of percent time (nlow = 54, nhigh = 50). (G) Survival rate for a prey that uses planning (blue), uses habit-based action
selection (pink), and uses hybrid control (green) based on environment eigencentrality. Environment grouping same as F. Plot
representation as in D.



pure plan-based action selection (Fig. 1A, G). However, the
hybrid strategy that engaged planning when transitioning from
a low eigencentrality region to a high eigencentrality region
significantly outperformed pure habit-based action selection,
and showed no significant difference in performance when
compared with pure plan-based action selection (Fig. 1G;
Mann Whitney U test with Bonferroni P > 0.05). Notably, us-
ing a hybrid control strategy resulted in 75%-85% of the time
being spent in habit-based action selection, which led to only
a 9% decrease in survival rate when compared to the survival
rate obtained from pure plan-based action selection.

Conclusion
Prior work on prospective coding in the hippocampus indi-
cates that the forward sweeping of spatial representations oc-
curs at important decision points when the reward contingen-
cies are uncertain (Johnson & Redish, 2007). The predator-
prey model we have used for this study is just a subset of
this broader phenomena where the animals have uncertainty
about where the reward is located. Within this model, the
predator takes on the role of an unpredictable, sometimes
unobservable aversive stimulus that has to be avoided. Our
results indicate that in dynamic environments, after consoli-
dating long successful action-sequences, selecting actions by
using a habit-based system would enable animals to succeed
in getting to the safety location in environments with either low
or high levels of clutter. In environments with midrange levels
of clutter, while pure habit-based control fails, we show that
planning throughout the entire episode is not necessary. A
controller that arbitrates between habit- and plan-based ac-
tion selection that exploits the connectivity of the environment
performs just as well as pure planning.

Prior research has hypothesized that control is transferred
over from planning to habit based on uncertainty in state val-
ues (Daw et al., 2005). Our findings fit within this literature,
since the prey’s uncertainty is proportional to the regional
openness and reachability—as quantified by eigencentrality.
While our work has primarily focused on switching from plan-
to habit-based action selection (and visa versa) in spatial do-
mains, eigencentrality as a concept has broader applicability.
Planning, similarly is not purely spatial. Given that our frame-
work relies on formalizations that extend beyond our current
application, it would be interesting to examine whether tran-
sitions from habit- to plan-based action selection based on
changes in eigencentrality extend to non-spatial contexts.
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