
Worst-Case Optimal Average Consensus Estimators for Robot Swarms

Matthew L. Elwin Randy A. Freeman Kevin M. Lynch

Abstract— Average consensus estimators enable robots in a
communication network to calculate the mean of their local
inputs in a distributed manner. Many distributed control
methods for robot swarms rely on these estimators. The
performance of such estimators depends on their design and
the network topology. For mobile sensor networks, this topol-
ogy may be unknown, making it difficult to design average
consensus estimators for optimal performance. We introduce a
design method for proportional-integral (PI) average consensus
estimators that decouples estimator synthesis from network
topology. This method also applies to the more general internal
model (IM) estimator, yielding extended PI estimators that
improve convergence rates without increasing communication
costs. In simulations over many geometric random graphs, the
extended PI estimator consistently reduces the estimation error
settling time by a factor of five.

I. INTRODUCTION
Average consensus estimators allow groups of robots to

agree on the mean of their individual inputs using local
communication in a network. These estimators form the basis
for many multi-robot coordination techniques because they
allow robots to share global information without requiring
a central computer or all-to-all communication [1]–[4]. One
such estimator, the proportional-integral (PI) estimator, al-
lows the robots to compute the average of constant signals
with zero steady-state error. This estimator’s robustness to
initialization error makes it particularly useful: events such as
robot failure, network switching, or step-wise input changes
cause re-initialization disturbances that the PI estimator
asymptotically rejects [5], [6]. Due to these properties, PI
estimators and similar robust average consensus estimators
have been successfully used for tasks requiring multi-robot
cooperation such as environmental modeling, formation con-
trol, and decentralized simultaneous localization and map-
ping (SLAM) [1], [6], [7]. For example, in the multi-robot
SLAM algorithm of [7], average consensus estimators allow
individual robots to merge their local maps into a global
map. Although these estimators have been studied in both
continuous and discrete time, this paper exclusively discusses
the discrete-time case.

One potential problem with consensus estimators, includ-
ing the PI estimator, is convergence speed. Until the estimator
converges, the robots operate with inaccurate information.
Precise estimator convergence rates depend on the estimator

This work is supported by the Office of Naval Research, Grant
N00014-13-1-0331. The authors are with the Department of Mechanical
Engineering (Elwin and Lynch), the Northwestern Institute on Complex
Systems (Freeman and Lynch), and the Department of Electrical Engineering
and Computer Science (Freeman), Northwestern University, Evanston,
IL 60208 USA. Emails: elwin@u.northwestern.edu,
freeman@eecs.northwestern.edu,
kmlynch@northwestern.edu.

and the network structure, particularly the network’s alge-
braic connectivity [5], [8]–[10]. This connectivity measure
depends on the network topology and the weights of indi-
vidual communication links. For known network topologies,
weights can be chosen optimally to maximize the estimator’s
convergence rate [9], [10]. For robot swarms, however, the
network is often unknown and may vary during deployment.

We present a method for designing discrete-time PI es-
timators that minimize the worst-case settling time when
the network topology is unknown. Our method decouples
estimator design from specific network structures by using
the separation principle introduced in [11]. This principle
applies not only to PI estimators, but also to a more general
class of robust average consensus estimators known as in-
ternal model (IM) estimators [12]. These estimators can be
designed to provide robust averaging of time-varying signals
such as ramps and sinusoids. Viewing the PI estimator from
the internal model perspective allows us to create optimal
extended PI estimators that greatly improve performance
without additional communication. The resulting estimators
can be implemented on robots as linear state equations.

Our design approach formulates estimator synthesis as a
robust control problem, distilling the effect of the network
into a single uncertain parameter [11]. We automate the syn-
thesis process by using generic global optimization routines
to minimize the estimator’s settling time [13]. Although these
numerical algorithms may not necessarily reach the global
minimum, they result in estimators that have consistently
good performance across a wide range of networks. Our
simulation results indicate that our design method results
in optimal extended PI estimators that converge five times
faster than the optimal PI estimator over a large variety of
geometric random graphs.

We organize the paper as follows. Section II reviews the
PI estimator and shows how it fits into the IM estimator
framework. Section III discusses the separation principle
and our estimator synthesis method. Section IV presents our
simulations and shows how adding additional states to the
PI estimator can improve its performance. We conclude with
a discussion of future work.

II. THE ESTIMATORS

A. Average Consensus

Consider N robots in a communication network repre-
sented by a weighted undirected graph. Robots i and j can
communicate if an edge exists between vertex i and j in the
graph. The edges have weights aij = aji > 0, with aij = 0
if i and j cannot communicate. We represent the graph by

its Laplacian matrix L ∈ RN×N , with

[L]ij ,

N∑
j=1

aij , i = j

−aij , otherwise
. (1)

The Laplacian is positive-semidefinite and always singular.
Let λ2 and λN be the second smallest and largest Laplacian
eigenvalues. The communication graph is connected if and
only if λ2 > 0; we assume that this connectivity condition
holds.

When the underlying network topology is known, the edge
weights aij may be chosen to maximize the convergence
rate [9], [10]. In the absence of such knowledge, we can
choose a systematic weight assignment scheme. Although
numerous weighting methods exist for average consensus es-
timators, we will use inverse-sum-degree weighting because
it provides a known bound for λN , in this case λN ≤ 1 [14].
With inverse-sum-degree weighting, aij = 1

deg(i)+deg(j) ,
where deg(i) denotes the degree of robot i. This weighting
scheme can be implemented in a distributed manner: each
robot transmits its degree to its neighbors in the network.

Every robot has an estimate of the average yi(k) and an
input φi(k). All robots’ estimates and inputs are stacked into
the vectors y(k) and φ(k). The goal of an average consensus
estimator is for every robot’s steady-state output to equal the
average of every robot’s input; that is

lim
k→∞

y(k) =
1

N
1N1TNφ(k), (2)

where 1N is a column vector of N ones. Robust average
consensus estimators, like the PI estimator discussed in
the next section, achieve this goal even when initialized
improperly. This robustness property allows the estimator
to converge with zero-steady state error for constant inputs,
even if events such as step input changes or robot failure
occur. For slowly changing inputs, the estimator will have a
small tracking error [1].

B. Proportional-Integral Estimator

To implement the PI estimator each robot executes the
following estimation equations

yi(k + 1) = yi(k)(1− γ) + γφi(k) (3)
− kp[L]iy(k) + ki[L]iη(k)

ηi(k + 1) = ηi(k)− ki[L]iy(k), (4)

where [L]i is the i-th row of the Laplacian, ηi(k) is an
auxiliary variable, kp is the proportional gain, ki is the
integral gain, and γ is the forgetting factor [5]. Each robot
transmits yi(k) and ηi(k) to its neighbors in the communi-
cation network. Intuitively, the proportional term kp[L]iy(k)
drives the robot’s estimate closer to that of its neighbors,
while the integral term ki[L]iη(k) ensures zero steady-state
error. The forgetting factor γ causes the initial state of
the estimator to decay, decoupling the steady-state response
from the initial conditions. If the communication graph is
connected, the PI estimator’s dynamics will converge with

zero steady-state error [5], [6]. Note that the estimator’s
dynamics depend on both the parameters (kp, ki, and γ)
and the Laplacian L.

C. Internal Model Estimator

The IM estimator is a robust average consensus estimator
that converges with zero steady-state error for certain time-
varying inputs [12]. This estimator requires every robot to
have a common input model d(z), derived from the z-
transform of the anticipated input. All inputs follow

φi(z) =
ci(z)

d(z)
, (5)

where ci(z) can vary between robots and is unknown. Ramp
inputs with slope mi, for example, have φi(k) = mik,
φi(z) =

miz
(z−1)2 , and d(z) = (z − 1)2. For the PI estimator,

which converges with zero steady-state error for step inputs,
d(z) = z − 1 and ci(z) = qiz, where qi is constant.

To derive the IM estimator, we introduce the transfer
functions h(z), g(z), and k(z) and rewrite the PI estimator:

yi(z) = h(z)(φi(z)− k(z)[L]iy(z)− [L]iη(z)) (6)
ηi(z) = g(z)[L]iy(z). (7)

For the PI estimator,

h(z) =
γ

z − 1 + γ
, (8)

g(z) =
k2i

γ(z − 1)
, (9)

and

k(z) =
kp
γ
, (10)

whereas for the IM estimator h(z) and g(z) must satisfy

h(z) =

kh(z)
d(z)

1 + kh(z)
d(z)

(11)

and

g(z) =
kg(z)

d(z)
, (12)

where kh(z) and kg(z) are transfer functions that the de-
signer chooses [11], [12]. The designer also must choose
k(z), but unlike g(z) and h(z), its structure is not prescribed.
Note that the PI estimator is an IM estimator.

To analyze PI and IM estimators we define the global error

e(z) = y(z)− 1

N
1N1TNφ(z), (13)

so that when the estimator tracks the average of the inputs,
the error is zero. When all the robots implement an IM
estimator according to (6) and (7) the error dynamics become

e(z) = P (z, L)φ(z), (14)

where

P (z, L) = (I+h(z)g(z)L2+k(z)h(z)L)−1h(z)− 1

N
1N1TN .

(15)

1
N 1N1TN

h(z)IN

L g(z)IN L

kp(z)IN L

φ y e

η

−

−

Fig. 1. Block diagram of the global error dynamics. The N ×N identity
matrix IN emphasizes that every robot implements h(z), g(z), and kp(z).

Fig. 1 provides a block diagram of the global error dynamics.
We explicitly show that P (z, L) depends on L to emphasize
that its value depends on a specific graph.

For the global error to reach zero in steady-state, the IM
estimator transfer functions, and therefore the PI estimator
gains, must satisfy the following stability theorem [12].

Theorem 1: A group of robots executing an IM estimator
over a network with Laplacian L will achieve zero steady-
state tracking error for inputs of the form of (5) if and only
if the following conditions hold:

1) h(z) and k(z) are stable, and the unstable zeros of
h(z) and the unstable poles of g(z) are disjoint.

2) h(z) =
kh(z)

d(z)

1+
kh(z)

d(z)

3) g(z) =
kg(z)
d(z)

4) h(z)
1+h(z)g(z)λ2+h(z)k(z)λ is stable for λ ∈ λ2 . . . λN .

Additionally, to implement the estimator using a one-hop
protocol, h(z) and g(z) must be strictly proper.

Proof: See [12] for a proof.
We assume that h(z) and g(z) are strictly proper to avoid
needing a two-hop protocol, which would require the robots
to send information to the neighbors of their neighbors.

III. SYNTHESIS

A. Separation Principle

Theorem 1 provides a guide for designing both PI and
IM estimators. Note that the fourth condition of Theorem 1
relates global stability to the Laplacian’s eigenvalues; this
forms the basis of the separation principle and will allow us
to decouple estimator synthesis from specific networks. We
use Theorem 1 condition 4 to define the separated system as

T (z, λ) =
h(z)

1 + h(z)g(z)λ2 + h(z)k(z)λ
. (16)

The following proposition describes the separation principle,
which was introduced in [11].

Proposition 1: The poles of P (z, L) are the poles of h(z)
and the poles of T (z, λ) for λ = λ2 . . . λN .

Proof: See [11].
Note that if the poles of T (z, λ) satisfy some condition for
λmin ≤ λ2 ≤ λ ≤ λN ≤ λmax, then, by Proposition 1,
the poles of P (z, L) also satisfy that condition for all

L ∈ Lset, where Lset is the set of all Laplacians L that
satisfy λmin ≤ λ2(L) ≤ λN (L) ≤ λmax. Additionally,
the poles of h(z) are independent of the network. We
can therefore eliminate the dependence of Proposition 1
on specific Laplacian eigenvalues by choosing appropriate
bounds λmin and λmax. Such bounds may be known even
when the specific graph is unknown. For instance, λmin can
be viewed as a minimum connectivity specification, and with
inverse-sum-degree weighting λmax ≤ 1 [14]. We discuss
how to determine λmin and λmax further in Section IV.

B. The Problem

Our goal is to produce estimators that converge quickly.
A good proxy for settling time in discrete systems is the
spectral radius of the system matrix; in our case, P (z, λ).
For unknown graphs, we will use the separation principle of
Proposition 1, which implies that

ρ(P (z, L)) = max(ρ(h(z)), max
λ∈λ2...λN

ρ(T (z, λ))), (17)

where ρ(·) = max(|poles(·)|) is the spectral radius.
Given a set of graphs Lset whose nontrivial Laplacian

eigenvalues lie between λmin and λmax, we define the worst-
case spectral radius as

Rmax = max
λmin≤λ≤λmax

R(λ), (18)

where
R(λ) = max(ρ(h(z)), ρ(T (z, λ))). (19)

Note that ρ(P (z, L)) ≤ Rmax for all graphs whose eigen-
values fall between λmin and λmax; thus Rmax provides a
bound on the worst-case estimator performance.

Overall, we would like to minimize the worst-case esti-
mator performance, leading to the following robust control
problem, where we find an IM estimator that minimizes the
maximum of the spectral radius over all of the eigenvalues:

min
kh(z),kg(z),k(z)

Rmax. (20)

For the PI estimator, this problem simplifies to minimizing
over the PI estimator parameters:

min
kp,ki,γ

Rmax. (21)

C. Parameters

For IM estimator synthesis, the parameter space of (20)
is infinite because kh(z), kg(z), and k(z) can have any
number of poles and zeros. We convert this problem into
a finite optimization by fixing the order of these design
transfer functions. This fixed order becomes an input into
the synthesis method, allowing the designer to control the
order of the resulting estimator.

The minimum number of parameters used for estimator
synthesis depends on rd, the degree of the internal model
d(z). A minimal order IM estimator is the internal model
estimator whose dynamics have the lowest order that can
still satisfy Theorem 1. In a minimal order IM estimator,

order(h(z)) = order(g(z)) = rd (22)

and k(z) is a static gain; therefore, the minimal estimator
order is 2rd. To maximize design freedoms, the relative
degree of h(z) and the relative degree of g(z) should be
one. Therefore, for the minimal order IM estimator,

deg(num(k(z))) = 0 (23)
deg(num(kh(z))) = deg(num(kg(z))) = rd − 1, (24)

and

den(kh(z)) = den(kg(z)) = den(k(z)) = 1. (25)

When rd > 1, kh(z) and kg(z) will be improper; however,
in the estimator implementation, these transfer functions are
combined with d(z) to yield strictly proper h(z) and g(z).

Minimal order estimators can be expanded by adding pole-
zero pairs to kh(z), kg(z), and k(z). Let rh, rg , rk be the
number of pole-zero pairs added to the minimal kh(z), kg(z),
and k(z) respectively. Assuming that the denominators of
kh(z), kg(z), and k(z) are monic, the estimator parameters
can be expressed as the vector x ∈ R2(rd+rh+rg+rk)+1,
where each element of x corresponds to a coefficient in one
of the synthesized transfer functions.

The PI estimator is a minimal order IM estimator because
deg(z − 1) = 1 and it has two states. We will show
that adding extra poles and zeros can greatly increase the
PI estimator’s performance. Although every pole-zero pair
slightly increases memory and computation requirements,
communication costs remain constant because robots trans-
mit their outputs, not their internal states.

D. Optimization

Given the parameterization above, the inputs to the mini-
max problem (20) are an initial parameter vector, the inter-
nal model d(z), an eigenvalue range [λmin, λmax], and the
numbers of additional pole-zero pairs. Solving this problem,
however, is difficult because it is non-smooth and non-
convex. Nevertheless, generic global optimization routines
yield estimators that settle quickly over a range of networks.

We divide the problem into two parts: the inner maxi-
mization (18) and the outer minimization (20). The inner
problem is a one-dimensional optimization over λ. We use
the deterministic DIRECT-L algorithm from NLopt [15]
limited to 38 objective function evaluations, which provides a
good compromise between computation time and accuracy.
This procedure needs to terminate quickly because the in-
ner maximization must be solved to evaluate the objective
function of the outer minimization. As the maximum over
the range of λ may occur at the endpoints, we explicitly
compare the output of the algorithm with ρ(T (z, λmin) and
ρ(T (z, λmax)).

To solve the outer minimization problem (20) we use
CRS2, the NLopt-provided implementation of a controlled
random search with local mutation [16]. This algorithm is
stochastic; therefore we run the optimization multiple times
and take the best result. We chose this method after testing
a broad array of global optimization algorithms.

The algorithms we employ cannot guarantee that they
return global extrema. Let R′min and R′max be the results of
the outer minimization and inner maximization algorithms,
and Rmin and Rmax be the corresponding global extrema.
For now, assume that the inner maximization finds the global
maximum such that R′max = Rmax. If the outer minimization
returns a sub-optimal point such that R′min > Rmin, the
resulting estimator will be sub-optimal. This sub-optimal
estimator, however, will provide the performance guarantee
ρ(P (z, L)) < R′min for all L ∈ Lset and will likely be useful
in practice. The effects of the inner maximization returning
a sub-maximal value, however, are more deleterious. If the
inner maximization returns a sub-optimal value, R′max <
Rmax, R′min no longer provides a performance guarantee
because it does not bound ρ(P (z, L)) for all L ∈ Lset. The
failure of the inner maximization effectively causes the outer
minimization to ignore any λ for which R(λ) > R′max.

Fortunately, in our experience, we can handle these issues.
The inner maximization is one-dimensional; therefore, after
synthesizing an estimator we can sample R(λ) at numerous
points to determine an upper bound Rbnd on R(λ). Using
this approach after synthesizing an estimator allows us to
determine the actual performance bound even when the inner
maximization returns a sub-optimal point. Theoretically, this
gridding approach could be used for the inner optimiza-
tion; however, this would significantly increase computation
time. Additionally, the outer minimization seems to produce
designs that make R(λ) flat over a significant portion of
the λ range; although this makes the inner optimization
more difficult, it also means that R(λ) > R′max for only
a small interval, and hence a small proportion of graphs.
This tendency matches our intuition about the problem: the
outer minimization tries to minimize equally over all values
of λ, resulting in an estimator that performs similarly over
all values of λ. The examples section includes a situation
where R(λ) > R′max, and shows that the resulting estimator
maintains good performance across a wide range of graphs.

IV. EXAMPLES

We have applied the estimator synthesis method to a
sample decentralized estimation design problem. First, we
generate a large set of networks, designed to roughly model
wireless sensor networks. We then synthesize several estima-
tors, analyze them, and simulate them over these networks.
The analysis and simulations demonstrate the advantages of
applying IM estimator synthesis techniques to PI estimators.
Although we did not perform experiments, real robots have
accomplished tasks using PI estimators [7].

A. The Networks

The design technique proposed in this paper relies upon
knowing an upper and lower bound for the Laplacian eigen-
values. To determine these bounds for this example, we
generate several random graphs and find the maximum and
minimum eigenvalues from the resulting graph set. We use
geometric random graphs as a model for the networks formed
during the operation of a wireless sensor network with

radius-limited communication [17]. The robots are randomly
distributed over the unit square; two agents are neighbors
if they are within a 1

4 radius of each other. Overall, we
generated 2210 networks ranging in size from 80 to 300
robots.

After generating the underlying network topology, we ap-
plied the inverse-sum-degree weighting scheme to the edges.
Overall, the graphs in this set have eigenvalues ranging
from 0.0084 to 0.7626. Using these bounds as a guide, we
set the minimum connectivity as λmin = 0.0080. Inverse
sum degree weighting guarantees that λN ≤ 1; therefore,
for half of the designs we set λmax = 1. Based on the
bounds of the randomly generated graph set, we also design
estimators with λmax = 0.763. The estimators designed with
λmax = 1 will be stable for any inverse-sum-degree weighted
graph, whereas those designed with λmax = 0.763 may
become unstable for graphs with λ > λmax; however, these
estimators should perform better within the eigenvalue range.

B. The Estimators

We synthesize six estimators; three for λmax = 1, which
guarantees robust performance over any graph with inverse-
sum-degree weighting, and three for λmax = 0.763, which
guarantees performance for all graphs in the set we gen-
erated. Each estimator comes from the best result after
running the global optimization algorithm 30 times. We also
compute the true worst-case performance bound Rbnd for
each estimator by evaluating R(λ) over a grid of of λ values
spaced at intervals of 0.0001. For every optimization, we set
all initial design variables to one and bound the parameters
by −1000 and 1000. Tables I and II present a summary
of the synthesis results for the standard PI estimator, the
PI estimator with an extra state in g(z) (PI-g), and the PI
estimator with extra states in g(z) and k(z) (PI-gk). We
chose these particular combinations of extra pole-zero pairs
because they offered the best performance.

First, we discuss the standard PI estimators. For λmax = 1,
the PI estimator gains are kp = 3.976, ki = 1.992, and
γ = 0.008, whereas for λmax = 0.763 the gains are kp =
5.20, ki = 2.61, and γ = 0.0105. The λmax = 1 estimator
performs slightly worse than the λmax = 0.763 estimator, but
remains stable for all inverse-sum-degree weighted graphs.1

This extra stability is important if the graph becomes dis-
connected: although the eigenvalues will be less than one,
they may increase beyond the specification, destabilizing
the λmax = 0.763 estimators. The estimators designed with
λmax = 1, however, remain stable and each subgraph will
converge to the average of its connected component.

The PI estimator with λmax = 0.763 displays the largest
disparity between the spectral radius returned by the opti-
mization R′max and the actual spectral radius Rbnd. This
is a result of the inner maximization problem returning a
sub-optimal value. Fig. 2 shows that the potential upper
bound of R′max will only be violated for a narrow range

1A rough estimate of the ratio between settling times for systems with
spectral radii of ρ1 and ρ2 is log(ρ1)

log(ρ2)
; therefore small differences in the

spectral radius can amount to large differences in settling time.

PI PI-g PI-gk

kh(s) 0.00798 0.0471 0.0634

kg(s) 497 154(z−0.346)
z−0.797

148(z+0.261)
z−0.801

k(s) 498 97.6 93.1(z+0.145)
z−0.306

Rbnd 0.9940 0.9620 0.9424

Best R′min 0.9920 0.9620 0.9424

Mean R′min 0.9920 0.9768 0.9863

Std. R′min 4e−15 0.0144 0.188

TABLE I
SYNTHESIS RESULTS FOR λmin = 0.008 AND λmax = 1.

PI PI-g PI-gk

kh(s) 0.0105 0.0587 0.0747

kg(s) 650 210(z−0.330)
z−0.777

188(z+0.277)
z−0.787

k(s) 497 101 97.1(z+0.142)
z−0.327

Rbnd 0.9923 0.9527 0.9314

Best R′min 0.9895 0.9526 0.9314

Mean R′min 0.9895 0.9648 0.9667

Std. R′min 5e−15 0.0166 0.0218

TABLE II
SYNTHESIS RESULTS FOR λmin = 0.008 AND λmax = 0.763.

of eigenvalues; therefore, for most graphs in the range,
R′max will be a more appropriate measure of performance
than Rbnd. Thus, in this instance, while the failure of the
maximization procedure does produce worse performance,
its practical effect is limited: only one out of the 2210 graphs
we test causes the spectral radius to violate the R′max bound.

Another trend to notice from Tables I and II is that adding
an extra state will greatly improve performance, and adding
two states improves performance further. For example, with
λ1, the worst-case PI estimator spectral radius is 0.992,
whereas the worst-case spectral radius for the PI-g estimator
is 0.962. These worst-case spectral radii translate into an
approximate settling time ratio of log(0.992)

log(0.962) ≈
1
5 , therefore

we expect the PI-g estimator to converge nearly five times
faster than the standard PI.

C. Simulations

We performed simulations over all 2210 graphs and, for
each run, recorded the maximum 2% settling time over all of
the robots. The inputs were steps with randomly generated

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9895

0.99

0.9905

0.991

0.9915

0.992

0.9925

0.993

λ

R
(λ
)

Fig. 2. R(λ) vs. λ for the PI estimator designed for λmax = 0.763

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
50

100

150

200

250

300

350

400

450

500

λN

S
et

tli
ng

 T
im

e
(s

te
ps

)

PI

PI−g

PI−gk

Fig. 3. Settling times for the estimators designed for λmax = 1.

magnitudes between 0 and 1. As depicted in Figs. 3 and 4,
the settling time remains relatively flat over almost all of the
graphs; thus the performance guarantees from the optimiza-
tion problem generally hold. Another benefit of estimators
designed using our method appears to be that they have
consistent performance across a wide range of networks.

As predicted, the PI-g estimator dramatically outperforms
the standard PI estimator, while the PI-gk estimator performs
the best; however, its performance gains over the PI-g estima-
tor are more modest. In most applications, the performance
improvement from the PI-g estimator outweighs the extra
memory and processing introduced by an extra state. Im-
plementing the PI-gk estimator still provides a performance
edge at low cost, but the benefits are less substantial.

The simulations show that the estimators designed for
λmax = 0.763 offer a small improvement in settling time
over those designed for λmax = 1. Additionally, for the
standard PI estimator designed for the narrow eigenvalue
range, a single graph performs worse than the others. This
graph has a maximum eigenvalue of λN = 0.7626, a value
that corresponds to the peak in Fig. 2. As discussed earlier,
this peak results from the inner maximization missing the
global minimum; however, as the simulations show, this
affects only one of the 2210 graphs.

V. CONCLUSION

We have synthesized average consensus estimators that
converge quickly over a range of networks. Future work will
apply these enhanced PI estimators to multi-robot coordi-
nation problems such as formation control, target tracking,
environmental modeling, and cooperative SLAM, investi-
gating how faster consensus estimators improve multi-robot
coordination strategies.

REFERENCES

[1] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decen-
tralized environmental modeling by mobile sensor networks,” IEEE
Transactions on Robotics, vol. 24, no. 3, pp. 710–724, June 2008.

[2] J. Cortés, “Distributed Kriged Kalman filter for spatial estimation,”
IEEE Transactions on Automatic Control, vol. 54, no. 12, pp. 2816–
2827, Dec. 2009.

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
50

100

150

200

250

300

350

400

450

500

λN

S
et

tli
ng

 T
im

e
(s

te
ps

)

PI

PI−g

PI−gk

Fig. 4. Settling times for the estimators designed for λmax = 0.763.

[3] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in Proceedings of the 44th IEEE Conference on Decision and
Control and European Control Conference, Seville, Spain, Dec. 2005,
pp. 8179–8184.

[4] C. Perterson and D. A. Paley, “Distributed estimation for motion
coordination in an unknown spatiotemporal flowfield,” in Proceedings
of the AIAA Guidance, Navigation, and Control Conference, no.
AIAA-2011-6478, Portland, Oregon, August 2011.

[5] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in Proceedings
of the 45th IEEE Conference on Decision and Control, San Diego,
CA, Dec. 2006, pp. 398–403.

[6] R. Freeman, P. Yang, and K. Lynch, “Distributed estimation and con-
trol of swarm formation statistics,” in American Control Conference,
2006, June 2006, p. 7 pp.

[7] R. Aragues, J. Cortes, and C. Sagues, “Distributed consensus on
robot networks for dynamically merging feature-based maps,” IEEE
Transactions on Robotics, vol. 28, no. 4, pp. 840–854, Aug. 2012.

[8] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” Automatic Control,
IEEE Transactions on, vol. 49, no. 9, pp. 1520 – 1533, Sept. 2004.

[9] P. Yang, R. Freeman, and K. Lynch, “Optimal information propagation
in sensor networks,” in Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, May 2006, pp.
3122 –3127.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems &; Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[11] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “A systematic
design process for internal model average consensus estimators,” in
Proceedings of the 52nd IEEE Conference on Decision and Control,
Florence, Italy, Dec. 2013, forthcoming.

[12] H. Bai, R. A. Freeman, and K. M. Lynch, “Robust dynamic average
consensus of time-varying inputs,” in Proceedings of the 49th IEEE
Conference on Decision and Control, Dec. 2010, pp. 3104–3109.

[13] S. G. Johnson, “The NLopt nonlinear-optimization package.” [Online].
Available: http://ab-initio.mit.edu/nlopt

[14] R. A. Freeman, T. R. Nelson, and K. M. Lynch, “A complete char-
acterization of a class of robust linear average consensus protocols,”
in Proceedings of the 2010 American Control Conference, Baltimore,
MD, July 2010, pp. 3198–3203.

[15] J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the direct
algorithm,” J. of Global Optimization, vol. 21, no. 1, pp. 27–37, Sept.
2001.

[16] P. Kaelo and M. Ali, “Some variants of the controlled random search
algorithm for global optimization,” Journal of Optimization Theory
and Applications, vol. 130, no. 2, pp. 253–264, 2006.

[17] M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,
“Stochastic geometry and random graphs for the analysis and design of
wireless networks,” Selected Areas in Communications, IEEE Journal
on, vol. 27, no. 7, pp. 1029–1046, 2009.

