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Model-Based Reactive Control for Hybrid and
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Abstract—Sequential action control (SAC) is a recently devel-
oped algorithm for optimal control of nonlinear systems. Previous
work by the authors demonstrates that SAC performs well on
several benchmark control problems. This work demonstrates
applicability of SAC to a variety of robotic systems; we show
that SAC can also be easily applied to hybrid systems without
any modification and that its scalability facilitates application to
high-dimensional systems. First, SAC is applied to a popular
hybrid dynamic running model known as the spring-loaded
inverted pendulum (SLIP). The results show that SAC can
achieve dynamic hopping without using prescribed touchdown
angles/leg stiffness. Moreover no specialized hybrid methods are
necessary to handle the contact dynamics, despite the nonsmooth
nature of the problem. The same SAC-controlled SLIP model
is also implemented in a game for the Android operating
system, demonstrating the minimal computational requirements
for implementing SAC. Our second example involves successful
stabilization and tracking control of a nonlinear, constrained
dynamic model of a humanoid marionette with 56 states and
8 inputs. Finally, a discussion that includes best practices on
tuning parameters of the SAC algorithm as well as the challenges
of hardware implementation is also provided, along with a video
that shows the resulting simulations for each example.

Index Terms—Optimization and optimal control, underactu-
ated robots, simulation and animation

I. INTRODUCTION

SEQUENTIAL action control (SAC) is a model-based con-
trol approach that provides closed-loop optimal actions for

nonlinear systems from a closed-form expression. Derivations
and examples in [1]–[3] show that the method takes advantage
of dynamics and develops constrained optimal actions on-line
that outperform off-line nonlinear trajectory optimization on
benchmark control problems. While these examples represent
challenging and well-understood control tasks, they are limited
to smooth systems of state dimension ≤ 8.

This paper shows that SAC may be successfully applied to
both hybrid and high-dimensional systems. Current Nonlinear
Model Predictive Control (NMPC) approaches that have been
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applied to these types of systems include differential dynamic
programming (DDP) and linear quadratic regulator/gaussian
synthesis (LQR/LQG) [4]–[7]. These methods are based on
linear approximations of the dynamic system (second-order
in the case of DDP) and usually assume quadratic objective
functions or second-order approximations of the cost. They
derive optimal controls indirectly by translating a numerically
challenging, 2×n-dimensional (n is the dimension of the state
vector) two-point boundary value problem (TPBVP), to a sym-
metric n× n system of Riccati equations. In contrast to these
alternatives, controls in SAC have an analytic form, which
significantly reduces execution time. Instead of iteratively
minimizing quadratized objectives, SAC seeks to improve the
nonlinear objective at each iteration. The approach is well-
posed and does not need to address positive-definiteness of the
quadratized cost, unlike e.g. [8]. A more detailed comparison
of SAC with the NMPC literature is given in Section II-B.

Modeling contact dynamics and incorporating constraints on
the control values are two additional challenges in control of
dynamic systems. While many (online) trajectory optimiza-
tion routines often require specialized and computationally
expensive methods to handle these cases [9]–[13], control
actions in SAC can be directly saturated without additional
calculations [2]. Moreover, we show here that SAC can handle
contact dynamics without any modification to the algorithm or
additional computational cost.

The contribution of this paper is three-fold. First, we show
that SAC’s algorithmic approach can automate control for a
variety of robotic systems, including those that locomote using
impacts. In particular, we apply SAC in simulation to a popular
dynamic running model known as the spring-loaded inverted
pendulum (SLIP). The SLIP is a nonlinear underactuated
hybrid system with impacts that provides a relatively low-
dimensional representation of the center of mass dynamics
and energetics of running for a wide variety of animal species
[14]–[16]. A number of robots have been designed according
to this model [17]–[19], while others use it as a template for
control [17], [20]–[23].

Controllers for the SLIP hopper and related dynamic lo-
comotion models often utilize feed-forward gaits/body tra-
jectories, prescribed touchdown angles/leg stiffness (often
controlled by dead-beat approaches) or (numerical) approx-
imations, e.g. of the solution to the stance dynamics or the
return map, designed to account for some degree of terrain
variation [17], [20]–[22], [24], [25]. While these methods are
advantageous in that they do not require a terrain model,
for robots designed to directly emulate the SLIP [17], [19],
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these processes ignore potential collisions (e.g. ledges between
stairs) by not accounting for the motion of the swing-leg
between take-off and landing. Online feedback control over
varied terrain is generally challenging, and some successful
methods rely on several decoupled feedback control mech-
anisms working in tandem [16], [23], [26]. This approach,
although effective, is more complex since several control loops
have to be designed and tuned to work in parallel. In contrast,
we demonstrate that SAC can compute constrained closed-
loop controls in real time to steer the SLIP hopper across
varied terrain, without requiring a pre-designed trajectory gait,
explicit control of the touchdown angles/leg stiffness or any
approximations. Moreover, this is achieved based on high-
level trajectory goals specifying the desired direction of motion
for the SLIP center of mass, without using decoupled control
loops. Despite the nonsmooth nature of the problem, the SAC
algorithm does not deviate from its normal execution to incor-
porate specialized solvers unlike many traditional trajectory
optimization/optimal control methods [9]–[12], thus avoiding
additional computational overhead. Moreover, we show that
SAC can handle rugged terrain like stairs while accounting
for swing-leg motion.

The second contribution is an Android application that
implements the SAC-controlled SLIP model in a 2-D game.
This example suggests that real-time, nonlinear optimal con-
trol is possible, even on devices with limited computational
resources. Lastly, we demonstrate that our approach can
compute trajectories for closed-loop pose control of high
dimensional systems. Specifically, we use an underactuated
56-state marionette in our simulation, that was modeled using
trep [27]—an open-source software simulation package. A
discussion that includes best practices on tuning parameters
of the SAC algorithm as well as the challenges of hardware
implementation is also provided to bridge the gap between
theory and application and to encourage the reader to utilize
our methods.

II. SEQUENTIAL ACTION CONTROL

In this paper we demonstrate the applicability of SAC, a
recently formulated algorithm for control of general nonlinear
systems, to hybrid and high-dimensional systems. For conve-
nience, we will now briefly summarize the algorithm presented
in [1]–[3].

SAC enables rapid, closed-loop constrained control synthe-
sis for broad range of systems and objectives. The systems
controlled by SAC are assumed to be in linear-affine form, i.e.
nonlinear with respect to the state vector, x ∈ Rn and linear
(or linearized) with respect to the control vector, u ∈ Rm,
such that

ẋ = f(x, u) = g(x) + h(x)u. (1)

As opposed to many methods, SAC is not restricted to a
linear quadratic cost. It applies to general tracking objectives
of the form

Jtrack =

∫ t0+T

t0

l(x(t)) dt+m(x(t0 + T )) , (2)

with differentiable incremental cost l(x(t)) and terminal cost
m(x(t0 + T )). Although (2) lacks a norm on control effort,

Fig. 1. An overview of the SAC control process.

SAC includes this norm in the following step, in (4). It should
be noted that SAC is not specific to trajectory tracking; energy
tracking as in [28] or tracking a “point” as shown in the
SLIP simulation in Section III-A is also possible. As a result
of its control synthesis process, SAC can calculate controls
that optimally improve (2) even in the situations where the
objective is non-convex or unbounded. The SAC algorithm
follows a cyclic, closed-loop process illustrated in Fig. 1.
As the cycle iterates, SAC sequences together a piecewise
continuous closed-loop response (see the SAC action signal
at the bottom of Fig. 1). Beginning with prediction, the
major steps of the algorithm are described in the following
subsections.

A. SAC Steps

1) Predict: The SAC process begins by predicting the evo-
lution of a system model from current state feedback. In this
step, the algorithm simulates the system (1) from the current
state x0 and time t0, for the finite horizon [t0, t0+T ], under a
default (nominal) control u = udefault. The horizon length T ,
is a design parameter. Without loss of generality, the default
control throughout this paper is null, udefault , 0. The term is
included in formulas for completeness and indicates potential
shared control implementation. As an example, udefault may
be an optimized feedforward controller providing a nominal
trajectory around which SAC would provide feedback.

The sensitivity of (2) to state variations along the predicted
trajectory is provided by an adjoint variable, ρ ∈ Rn, also
simulated during the prediction step. The adjoint satisfies

ρ̇ = −Dxl(x)T −Dxf(x, udefault)
T ρ

subject to ρ(t0 + T ) = Dxm(x(t0 + T ))T . (3)

The prediction phase completes upon simulation of the state
and the adjoint system under udefault control. The resulting
trajectories x(·), ρ(·) will be used in (4) in the following
section.

2) Compute optimal actions: Each iteration of the SAC
process loop depicted in Fig. 1 returns a set of values for the
control vector, the control application time (Section II-A3) and
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the control duration (Section II-A4). A single vector of control
values along with its associated application time and duration
define a SAC control action as produced at each iteration.

Before computing the control application time and duration,
SAC computes a schedule, u∗ : {t | t ∈ [t0, t0 + T ]} 7→ Rm,
corresponding to the values of the control action that would
optimally improve performance if applied for some duration
at an arbitrary time t ∈ [t0, t0 + T ]. The control action values
in u∗ optimize

Ju =
1

2

∫ t0+T

t0

[
dJtrack
dλ

− αd
]2

+ ‖u(t)‖2R dt ,

with
dJtrack
dλ

= ρ(t)T (f(x(t), u)− f(x(t), udefault)). (4)

The quantity dJtrack

dλ (see [29]) denotes the rate of change
of the cost with respect to a switch of infinitesimal duration
λ in dynamics, produced by a SAC action applied at some
time τ . Thus, dJtrack

dλ intrinsically parameterizes an action by
its application time and duration, which is why these two
variables are calculated in the cyclic process in Sections II-A3
and II-A4. Intuitively, SAC is improving the open-loop cost (2)
by driving dJtrack

dλ to a negative value αd ∈ R− through
minimization of (4). This parameter, αd, is user specified and
allows the designer to influence how aggressively each control
action improves the current trajectory cost.

Based on the simulation of the dynamics (1), and (3)
completed in the prediction step (Section II-A1), the control
schedule that minimizes (4) is provided as a closed-form
expression,

u∗ = (Λ +RT )−1
[
Λudefault + h(x)T ραd

]
, (5)

with Λ , h(x)T ρρTh(x).
3) Decide when to act (find τ ): As mentioned before, the

quantity dJtrack

dλ parameterizes an action by its application time
τ . As a result, the SAC algorithm optimizes a decision variable
not normally included in control calculations—the choice of
when to act. The curve u∗ provides the values of possible
actions that SAC could take at different times to optimally
improve system performance from that time. The algorithm
chooses one of these actions to apply at each iteration of the
SAC process and then re-computes the curve u∗ from current
state feedback at the next iteration. In choosing when to act
(choosing an action from curve u∗), SAC searches u∗ for a
time τ that optimizes the trade-off between the cost of waiting
and the efficacy of control at that time according to,

Jt(τ) = ‖u∗(τ)‖+
dJtrack
dλ

∣∣∣∣
τ

+ (τ − t0)β . (6)

The parameter β ∈ R is usually chosen to be a fixed value,
β ∈ [1, 2], encoding the cost of waiting.

4) Decide how long to act (find λ): The quantity dJtrack

dλ
also parameterizes an action by its duration. After computing
the values of potential optimal actions from (5) and choosing
when to act based on (6), the final step in synthesizing a SAC
action is to choose how long to act (select the control duration).
It is typically assumed that actions will last for short duration
as the control synthesis cycle is fast and the next action is
prepared for implementation quickly. For these reasons, SAC

implementations apply a line search process. Starting with a
(short) initial duration, λ = λ0, the effect of the control action
is simulated from (1) and (2). If the simulated action improves
cost (2), the duration is selected. If this is not the case, the
duration is reduced and the process is repeated.

After computing the duration, λ, the SAC action is fully
specified (it has a value, an application time and a duration).
As an additional step, when udefault = 0, actions can be
directly saturated to satisfy any min/max control constraints
of the form umin,k < 0 < umax,k ∀k ∈ {1, . . . ,m} (see [2]
for a proof that saturated controls still result in a reduction
in cost). By iterating on this process (Section II-A1 until
Section II-A4), SAC rapidly synthesizes piecewise-continuous,
constrained control laws for nonlinear systems. For more
information about SAC, the reader is encouraged to consult
[1]–[3].

B. Comparison to NMPC Literature
The following points are worth noting when comparing SAC

to alternative NMPC methods (see e.g. [4]–[7], [30]–[33] and
references therein).

1) SAC uses the continuous-time dynamics, thus allowing
for variable-step integration, as opposed to many NMPC
alternatives that utilize the discrete-time dynamics [7], [30],
[31], [33], [34].

2) SAC is applied to the nonlinear cost function as opposed
to e.g. DDP and LQR/LQG approaches in [4]–[7] which use
quadratic approximations of the cost.

3) When solving the open-loop problem at each iteration
(see steps in Sections II-A1 through II-A4), SAC does not
minimize but rather improves the nonlinear cost function.
On the other hand, many NMPC methods compute an open-
loop optimal control signal over a finite horizon [t0, t0 + T ]
(usually over the entire interval), to minimize the objective
on that interval. As the horizon window changes, the calcu-
lated control is applied for the interval [t0, t0 + ts] (where
ts is the sampling time) and the remaining control for the
interval [t0 + ts, t0 + T ] is discarded or used to seed the
control optimization on the next interval [t0 + ts, t0 + ts + T ].
However, the computed control on the interval [t0, t0 + T ]
only guarantees reduction in cost when the entire time horizon
is used, even though the control signal is only applied on
the interval [t0, t0 + ts]. Moreover, minimizing a quadratic
approximation of the cost as in DDP and LQR/LQG methods,
does not guarantee that the solution is a (local) minimizer of
the original nonlinear cost. As opposed to these methods, SAC
computes control actions that optimally improve the cost on
the entire horizon, [t0, t0 + T ], assuming that the control will
be applied during the period [t0, t0 + ts]. Thus, no portion of
the calculated open-loop action is discarded.

4) The solution of the open-loop problem in SAC has
an analytic form given in (5) which requires only the n-
dimensional simulations of (1) and (3) (2n total). Alternatively,
NMPC methods either employ nonlinear programming solvers
(see [35] and [36] for a review) or solve a symmetric n × n
matrix of Riccati equations as, for example, in [4]–[7].

5) Control saturations can be incorporated without addi-
tional computational overhead in the SAC process (see [2] for
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a b c

Fig. 2. a) Parameters and configuration variables for the planar SLIP system. b) Illustration of the planar SLIP successfully hopping up stairs
and over sinusoidal terrain (also be seen in the accompanying video). The SAC algorithm computes constrained motions on-line to place
the toe of the SLIP model and develops constrained thrusts that allow it to hop without falling. The process is automated in that it requires
only a robot model and high-level trajectory goals specifying the desired direction of motion for the SLIP center of mass. c) A snapshot of
an Android game (available for download) that utilizes the SLIP model.

a proof). Constraints on the state may be added by introducing
penalty terms in the cost function.

6) SAC can be applied to hybrid systems without any
modification. Despite the nonsmooth nature of these systems,
the SAC algorithm does not deviate from its normal execution
to incorporate specialized solvers unlike many traditional
trajectory optimization/optimal control methods, thus avoiding
additional computational overhead (see [9]–[12]).

7) SAC optimizes application time τ and control duration λ.
These two decision variables, which are not normally included
in alternative NMPC methods, allow more flexibility in the
control calculation. For example, as explained in [2], τ can be
used to avoid acting on singular configurations where control
could be less effective or not effective at all (e.g. the horizontal
configuration in a cart-pendulum system).

8) SAC may be computed quickly and efficiently. This
follows immediately from the previous points.

Stability Remarks: It is shown in [2] that, under certain
assumptions, SAC solutions simplify to linear time-varying
state feedback laws near equilibrium points. Additionally, if
(2) is quadratic and nominal control udefault is modeled
as applying consecutively computed optimal actions, SAC
actions (5) simplify to finite horizon LQR controls [37]. In
this case one can prove the existence of a Lyapunov function
and guarantee local stability for SAC using methods from
linear systems theory. In its current state of development, SAC
lacks global guarantees for stability. However, we believe that,
similar to NMPC methods, stability for SAC can be achieved
by applying a terminal cost/region approach as in [30]–[33]
and we have left these developments for future work.

III. EXAMPLE SIMULATIONS

In this section we present two simulation examples that
demonstrate the applicability of SAC to a) hybrid and b) high-
dimensional systems. In the hybrid system example SAC is
used to automate dynamic locomotion of a hopping mecha-
nism over uneven terrain. We show that, unlike many trajectory
optimization routines, SAC can control this model without
interrupting its normal execution to include hybrid or other
specialized methods. The high-dimensional example involves
control of a highly nonlinear and constrained humanoid mar-
ionette model with 56 states and 8 inputs. These examples
indicate potential application of SAC to a wide variety of
systems.

A. Hybrid System Example: The SLIP Model

In this section we apply SAC to an underactuated nonlinear
hybrid system with impacts. In particular, we utilize a spring-
loaded inverted pendulum (SLIP) model; a model that is
common in analysis and control synthesis of dynamic hopping
and running. Figure 2a shows the configuration of the model,
which consists of a point mass attached to a spring. The
choice of configuration variables is similar to that in [38]. The
state, x = [xm, ẋm, zm, żm, xt], consists of the 2-D position
and velocities of the center of mass followed by the “toe” x
coordinate, xt, corresponding to the spring endpoint.

The dynamics of the SLIP are hybrid and include two modes
/ phases: 1) a flight phase where the toe endpoint is in the air
and 2) a stance phase where the toe is in rolling contact with
the ground. The length, L, of the SLIP model matches the
resting length of the spring, L = L0, in flight and

L =
√

(xm − xt)2 + (zm − zG)2 (7)

in the stance phase. The zG term in (7) tracks the height of
the terrain at the location of the toe. Note that (7) assumes
the model is in the stance phase where zG is the height of
the toe. The transition between flight and stance is state-based
and determined by zero crossings of an indicator function,

φ(x) = zm −
L0(zm − zG)

L
− zG , (8)

which applies L from (7). Hence, we assume the spring is in
compression when in stance and the model lifts-off once it
expands back to full (rest) length.

Control authority for the SLIP also switches with phase. On
the ground SAC can apply force along the spring axis, us, and
in flight SAC can directly control the velocity of the toe uf
along the x axis. The complete control vector is u = [us, uf ]T .
The flight phase dynamics,

ff (x, u) =


ẋm
0
żm
−g

ẋm + uf

 , (9)
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and stance phase dynamics,

fs(x, u) =


ẋm

(k(L0−L)+us)(xm−xt)
ml
żm

(k(L0−L)+us)(zm−zG)
ml − g

0

 , (10)

depend on gravity, g = 9.81m/s2, mass, m = 1 kg, a spring
resting length, L0 = 1 m, and spring constant, k = 100 N

m .
The simulation was based on the following parameter val-
ues: we used a quadratic trajectory cost based on (2) with
l(x(t)) = 1

2 (x(t)− xd)TQ (x(t)− xd) and m(x(tf )) = 0,
with Q = Diag[ 0 , 70 , 50 , 0 , 0 ], and time horizon T = 0.6s.
Parameters of the control cost in (4) were selected as R = 0.1,
αd = γJtrack with proportional feedback constant γ = −10.
Finally, control inputs were constrained on-line so that |uf | ≤
5 m

s and |us| ≤ 30 N.
For a 90s closed-loop trajectory on varying terrain (30 Hz

feedback), the SLIP requires < 2s to simulate on a lap-
top. As the trajectory results in Fig. 3 (corresponding to
the stair climbing example in Fig. 2b) show, SAC uses
the flight dynamics (9) to include and automate swing-leg
planning—no prescribed leg stiffness/touchdown angles or
other approximations are used. SAC provides closed-loop,
velocity constrained swing-leg motions on-line that avoid
ledges and uses thrust to hop up stairs (or uneven terrain
as in Fig. 2c). These tasks are achieved based on high-level
trajectory goals specifying the desired direction and height
of motion for the SLIP center of mass. The latter can be
typically determined by sensors such as vision, radar, and laser,
perhaps combined with pre-defined maps, generating a model
of the terrain ahead. In the stair-climbing simulation we used
xd = [ 0 , 0.7 m

s , zG + 1.4 m , 0 , 0 ]T as our trajectory goal and
the terrain model, zG, was prescribed by a piecewise function
with a rise of 0.2 m every 2

3 m. This choice of xd specifies
the same constant velocity translation at fixed desired height.

Even with the hybrid dynamical model, the SAC algorithm
does not deviate from its normal execution to handle contact
dynamics, thus avoiding additional computational overhead.
This is in contrast with many existing trajectory optimiza-
tion/optimal control methods (e.g. [9]–[12]), that do not nor-
mally accommodate nonsmooth events and require the use of
specialized algorithms to do so.

Note that we have also implemented the planar version of
the SLIP as an Android game (see a snapshot of the app in
Fig. 2c) that is available for free download at nxr.northwestern.
edu/sites/default/files/files/SACGames.apk. In the Android
game, the user provides a reference velocity for the hopper
along the horizontal axis using the phone’s accelerometer.
The SAC algorithm uses the same parameters as in the stairs
example and the sinusoidal floor corresponds to ground height
zG(x) = 0.2 cos(4x) + 0.2 m for the first two “bumps” and
zG(x) = 0.3 cos(4x) + 0.3 m for the last.

B. High Dimensional Example: Humanoid Marionette Pose
Control

To illustrate the scalability of SAC control synthesis, we
utilized SAC to control a simulation of an underactuated,
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Fig. 3. Trajectory corresponding to the planar SLIP hopping up stairs
(Fig. 2b).

constrained, and highly nonlinear humanoid marionette model
with 56 states, 4 string length constraints. and 8 control inputs.
The controls are two in-plane forces for each of the four
string endpoints (see green points in Fig. 4a, right). Two



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

different control tasks are presented – stabilization of the
marionette to an equilibrium point and tracking of predefined
trajectories for the arms of the marionette. Note that our
model utilizes generalized coordinates for the system and the
trep software package is used for calculating the forward
dynamics as well as first order linearizations [27]. Trep
(see nxr.northwestern.edu/trep) allows for dynamic
simulation of arbitrary mechanical systems in generalized
coordinates described using a tree structure. The generalized
coordinates used in this model result in a conservative number
of states; other choices can lead to as many as 124 states
(9 rigid bodies ∈ SO(3) and four string endpoints with two
degrees-of-freedom each).

The simulation was based on the following parameter val-
ues: we used a quadratic trajectory cost based on (2) with
l(x(t)) = 1

2 (x(t)− xd)TQ (x(t)− xd) and m(x(tf )) = 0,
with the entries of Q and R based on standard values (scaling
of the identity matrix) for both stabilization and tracking. The
time horizon was set to T = 1.0s and similar to the SLIP
simulation, R = 0.1, αd = γJtrack with proportional feedback
constant γ = −10. Finally control saturation constraints
were arbitrarily specified as ±1 N, along with the SAC loop
frequency of 20 Hz.

Stabilization: Stabilization involved moving the marionette
model from an initial pose with the left arm raised, to a desired
equilibrium pose xd, specified as the origin (see top right
panel in Fig. 4a). We compared trajectories generated by SAC
with the uncontrolled system trajectories (free dynamics). The
simulation results are shown in Fig. 4b. It is clear that SAC
stabilized the system to the origin quickly compared to the
free motion of the marionette. The SAC-controlled simulation
for the stabilization took 155s to compute the 3s trajectory—
about 50× slower than real-time.

Tracking: The tracking task used SAC to track predefined
trajectories for the arms and shoulders. In particular, we used
a time-parameterized sine wave as the reference configuration
for one of the degrees of freedom for both the left and right
shoulder joints. This reference has the marionette cyclically
spreading and closing its arms. All other reference configura-
tions were set to their equilibrium values, and the reference
velocities were all zero. Note that this reference is dynamically
infeasible – perfect tracking cannot be expected. The simula-
tion took 200s for a 10s trajectory (about 20× slower than
real-time). The resulting configuration trajectories are shown
in Fig. 4c. Even for this large-dimensional, highly underactu-
ated system, SAC managed reasonable tracking performance
of the two moving shoulder joints with little excitation of the
other configurations. For a better illustration of this example
see the accompanying video.

While the marionette example is not yet running in real time,
we note that the current implementation relies on interpreted
run-time code that would be straightforward to precompile.
Combined with parameter optimization, we expect real-time
control for systems of similar size is possible on standard
computing hardware.

a
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c
Fig. 4. a) SAC controls the pose of a constrained and underac-
tuated nonlinear marionette model with 56 states, 4 string length
constraints, and 8 control inputs based on a real robot-controlled
marionette system [39]. Modeling is done using the trep software
[27]. b) The SAC controller uses a quadratic objective to compute
constrained controls in closed-loop that drive four strings endpoints
(green), such that the marionette transitions to a desired configuration
(stabilization at the origin). Note that the free dynamics (red) are very
lightly damped as seen in the accompanying video. c) Configuration
trajectories for the marionette tracking control task generated by SAC.
The shoulder joints track the predefined sine wave while the rest of
the body remains stationary. The tracking motion can also be viewed
in the accompanying video.

IV. DISCUSSION

A. Tuning SAC Parameters
Besides a model of system dynamics the only required

modifications for applying SAC to varying systems are the
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encoding of the objective in (2), and tuning the parameters
of the algorithm. SAC parameters that must be tuned include
the time horizon T and the “controller aggressiveness” αd
(see (4)). Other parameters that may appear and require tuning
include the control saturation limits, cost weighting matrices
(e.g. Q and R) and loop/feedback frequency.

Trajectory cost: Both presented cases (SLIP and mar-
ionette) use a quadratic trajectory cost requiring a Q matrix
and desired trajectory, xd. In practice, the SAC algorithm does
not appear to be very sensitive to changes in the weighting
matrices – generally much less sensitive than traditional linear-
quadratic regulator design. Consequently, once good values
for these parameters are found, it is rare to have to adjust the
values. As evidence, for the marionette system, the entries of
Q and R are based on standard values (scaling of the identity
matrix) for stabilization and tracking, while for the SLIP, both
examples apply the same Q and R.

Control saturation: These values are generally selected
off-line and do not require further tuning.

Time horizon T and aggressiveness αd: Parameters T
and αd may require tuning to accommodate different system
models. Similar to the weight matrices in (2) however, once
specified, they often result in reasonable performance for a
variety of conditions and tracking objectives. As evidence,
both SLIP examples use the same values with T = 0.6s and
αd = γJtrack with proportional feedback constant γ = −10.
As mentioned before, for a 90s closed-loop trajectory on
varying terrain (30 Hz feedback), the SLIP requires < 2s
to simulate on a laptop. Thus, similar to existing methods
designed around empirically stable SLIP hopping (see the
background section in [40]), we leveraged the speed of SAC to
search for parameters that yield successful long-term hopping
over varying terrain and initial conditions. As in the SLIP
case, both presented problems in the marionette simulation
(stabilization and tracking) used the same values for T and
ad. Intuitively, systems with slower dynamics (e.g. a long
pendulum) will typically need higher T values to follow a
trajectory based on state error.

Loop frequency: The importance of this parameter is
explained in the following section. In general, high loop
frequency is preferable since it allows the algorithm to in-
corporate feedback faster, which is crucial when dealing with
uncertainty.

B. Challenges of Hardware Implementation

Hardware implementation is often challenging, regardless of
the control algorithm. For SAC, there is a limited number of
experimental applications to date [41] since the algorithm was
only recently formulated (this is the focus of our current work).
Nevertheless, there are a few points that should be highlighted
when implementing SAC on a real system.

Looking at Fig. 3 and previous examples in [1]–[3], it is
clear that SAC generates discontinuous control signals. How-
ever, many actuators cannot generate signals of this form—
the result of forcing the actuator to track the discontinuous
SAC output would be a smoothed version of that control
signal, which would most likely fail to meet the performance

requirements of the system. It must be noted that situations like
this, where the actuators cannot reliably generate the calculated
control input, are not SAC-specific and can be found in other
algorithms as well, perhaps for different reasons (e.g. control
saturation). In our case, a solution to this problem would be to
calculate SAC actions in an appropriate control space. For ex-
ample, to control the cart velocity in the cart pendulum system,
one could set SAC to control the cart acceleration (note that
this approach increases the dimensionality of the state space
by m in the worst case scenario). When the SAC-calculated
acceleration is integrated, the corresponding velocity would be
continuous and thus feasible for the actuators.

Uncertainty is also an issue in an experimental setup. Com-
mon sources of uncertainty include noise in measurements
and model discrepancies. Nevertheless, one of the benefits of
MPC is the use of feedback to partially compensate for these
types of uncertainty. Naturally, better results can be achieved
by using high frequency feedback. SAC in particular is well-
suited for this scenario, since as described in Section II-B,
control calculations are generally fast. In the event that high
frequency feedback/communication is not supported by the
hardware, then noise and model inaccuracies could be critical
for all (MPC) algorithms. In that case, time-critical, SAC-
specific processes like the calculation of the application time
and duration of an action can be adjusted so as to provide
solutions in agreement with the attainable bandwidth.

V. CONCLUSIONS AND FUTURE WORK

This paper utilizes the computational advantages of se-
quential action control (SAC) for control policy generation.
Simulations demonstrate the approach on a high-dimensional
system (a 56-state marionette model) and in hybrid dynamical
locomotion (using a spring-loaded inverted pendulum – SLIP).
In the particular case of the SLIP, the fact that SAC controls the
system with little domain/system specific knowledge is note-
worthy. The algorithm is also applied with little modification
to accommodate the hybrid nature of the SLIP model. These
examples, as well as the benchmark examples presented in
[1]–[3], demonstrate potential applications of SAC to a wide
variety of systems.

Several promising research directions have been identified
to help improve the applicability and utility of SAC. As men-
tioned in Sections II-B and IV-B developing global guarantees
for stability and validating SAC experimentally are some of
our immediate goals. Another likely direction for future work
related to the previous ones is automated SAC parameter
selection. Currently, one can find SAC parameters to provide
local stability around equilibrium based on the analytical
expression for optimal actions [1], [2]. However, away from
equilibrium tuning may be necessary to develop long-term,
empirically stable trajectories. Leveraging the computational
efficiency of SAC synthesis, numerical methods (e.g. Sum-of-
Squares [42]) can select parameters that provide conservative
approximations of stable regions of attraction for general
(nonlinear) systems.
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