Embedded Control Synthesis Using One-Step Methods in Discrete
Mechanics

Jarvis Schultz and Todd D. Murphey

Abstract— Low bandwidth control and estimation for non-
linear systems presents a challenging problem that is often en-
countered when dealing with implementation on an embedded
platform. Discrete mechanics techniques for system modeling
are well-suited to low-bandwidth applications because they
posses desirable numerical properties over a large range of
timesteps including exact constraint conservation, and excellent
Hamiltonian and momentum behaviors. We present an overview
of a variational integrator based discrete mechanics system
representation and corresponding state choice that allows the
discrete flow to be expressed as a one-step map as required by
classical digital control design tools. This modeling paradigm
is used to experimentally control an underactuated, nonlinear
system with relatively low control frequency. Simulations of the
experimental system demonstrate significantly better extended
Kalman filter performance using the present framework over
a traditional one-step Euler approximation.

I. INTRODUCTION

With technological progress the capabilities of sensors,
actuators and processors is continually progressing. Yet many
situations benefit from utilizing less advanced components.
Less capable components usually imply cheaper costs, and in
industrial settings this becomes an important design consid-
eration. Mathematical methods that allow one to accomplish
control tasks with lower bandwidths, fewer components, and
less precise sensors yields cheaper consumer goods.

In some instances, technological progress in one direction
can mean a negative trade-off in another. The Microsoft
Kinect® is a perfect example; several years ago, the idea
of a very inexpensive consumer electronic providing real-
time 3D point cloud information was out of the question.
Now the community has embraced the vast amount of data
that the Kinect provides. However, what if one desires to
use this device to provide feedback of a highly dynamic
system? The relatively low frequency (=30 Hz) of the Kinect
must be taken into consideration to obtain high-performance
estimators and controllers.

Due to sensor noise, and unmeasurable states, estimation
and filtering become a near-requirement in real-world control
systems. Whether utilizing traditional Gaussian-assumption
filters such as the Kalman Filter or numerically estimating

J. Schultz jschultz@u.northwestern.edu

T.D. Murphey t-murphey@northwestern

Department of Mechanical Engineering, Northwestern University,
Evanston, IL

This material is based upon work supported by the National Science
Foundation under award IIS-0917837. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

uncertainty propagation through sampling-based methods
such as a particle filter, an underlying mechanical model and
numerical integrator that accurately reflects the embedded
system’s characteristics is crucial to the success of the filter-
ing algorithm. As a digital embedded system will certainly
be running the control/ estimation loop at discrete time
increments, it is necessary to choose a discrete approximation
of the inherently continuous system. Traditional choices
include implicit and explicit Euler methods and Runge-
Kutta methods; moreover, when dealing with an embedded
system, it is desirable that the discrete approximation be
an explicit, one-step method. A one-step method means
that the system will need to remember less history of the
of the state which means less memory usage and less
computation. Additionally, standard discrete linear systems
tools such as Linear Quadratic Gaussian (LQG) estimators,
Linear Quadratic Regulator (LQR) controllers, and Kalman
filters are often an important component of a control loop,
even for nonlinear systems [7]. In the nonlinear setting, one
typically uses a local linearization to achieve the standard
form of a discrete linear system given by

Xyt1 = AgXy + Brug. (1

To use these traditional tools of discrete systems (LQR and
LQG) with integration techniques that are greater than one-
step methods one must convert the discrete representation
into an equivalent one-step method which usually means
introducing extra dimensions to the state representation of
the system. As a result it is quite common, in practice, to
restrict a system’s discrete approximation to a simple, low-
order method such as explicit Euler.

In highly dynamic systems or systems with holonomic
constraints, simple Euler integration tends to artificially add
or subtract energy to simulations; additionally for constrained
systems, this integrator exhibits constraint drift which may
eventually diverge to such an extent that the simulation goes
unstable. As a consequence, this convenient and practical
design choice may lead to poor estimator and controller
performance, especially in low-bandwidth scenarios.

In this work, we present a variational integrator based,
discrete mechanics modeling framework that addresses many
of these aforementioned problems with the practical imple-
mentation of control schemes on real embedded systems.
A brief overview of discrete mechanics is first presented in
Section II, followed by a description of a particular choice
of state that enables representing the system as a one-step

method in Section II-B. This state choice and modeling
paradigm allows one to find exact an exact linearization
of the discrete approximation to the system. Next, an ex-
ample system and corresponding experimental apparatus
that exhibits many of the aforementioned embedded system
constraints is discussed in Section III. Finally, experimental
and simulation-based results are presented illustrating the
features of applying this modeling framework to an embed-
ded system in Section IV.

II. DISCRETE MECHANICS

In the discrete mechanics framework, one attempts to find
a sequence {(t0,qo),(t1,41),---,(ts,qn)} that approximates a
continuous time trajectory of a system i.e. g ~ g(;) where
t is time, and g € Q, the configuration space of the system.
Define the discrete Lagrangian as an approximation to the
action integral over a single timestep of size At =t — 13

as
Tk+1

Ligeae) ~ [Lia(@.d(e)ds. @

T

Note that various choices for this approximation are avail-
able, and the particular choice will govern the accuracy order
of the integrator. The next step is replacing the traditional
action integral with an action sum

t n—1
Staltosty) = [Lla(®).a(0)dr~ ¥ L) 3)
‘o k=0

Applying a variational principle to find stationary values of
this action sum yields an implicit set of difference equations
referred to as the unforced, unconstrained Discrete Euler-
Lagrange (DEL) equations’

D1Ly(qk;qi+1) +DaLa(qk—1,qx) = 0. 4

In these implicit difference equations, given two sequential
configurations g;—; and g, the next configuration in the
sequence gi4+; is found by using a numerical root solver
for Eq. (4).

If a system has forcing, time integrals of the continuous
forces are approximated with numerical integration rules,
and through a discrete analog to the Lagrange-D’Alembert
principle, the forced DEL equations may be derived. Also
note that if the system involves holonomic constraints, these
are also easily incorporated into the DEL equations. Both
of these additions simply add terms to the right-hand side
of Eq. (4), but the terms on the left-hand side remain
unchanged.

Given a constraint of the form ¢(g(7)) = 0, the discrete
integrator exactly enforces ¢(g;) = 0 at every step. In tra-
ditional integration schemes, such as Runge-Kutta methods,
one must often implement complex numerical stabilization
techniques to compensate for constraint divergence. In the
discrete mechanics setting, this complexity is completely
avoided. For more about variational integrators and their
development see [15], [11], and [10].

'Here we have used the slot derivative notation where D; f(-) represents
a derivative of f with respect to its ith argument.

A. Kinematic Configuration Variables

For implementation convenience, when modeling the dy-
namics of mechanical systems, it is often desirable to reduce
the full configuration space into a subset of configurations
that follow kinematic paths. One way that this reduction
can occur is by assuming that an actuator is capable of
sufficiently controlling a given degree-of-freedom along any
arbitrary path [8], [3]. Then the dynamics associated with
the new “kinematic” configuration variables may be disre-
garded. This mixed kinematic-dynamic approach has several
practical advantages.

First, the modeling of the dynamics of the actuators
themselves is completely decoupled from the modeling of
the dynamic system that is actually of interest. Second, from
a practical perspective, in an experimental setup, it is often
much easier to close the loop around velocities or positions
than it is around forces. For example, no current sensing
components or load cells are required in motor controllers,
only encoders are used. This reduces both total component
count, and system complexity. Additionally the motor control
becomes much less dependent on having an accurate motor
model.

In the continuous time setting this mixed kinematic-
dynamic model [14] is generated by defining the system
configuration ¢ to have two parts a dynamic part ¢4, and
a kinematic portion p i.e. ¢ = [gs p]T. To ensure that the
kinematic trajectory is twice differentiable in time we define
the kinematic portion of the input u to be p. Then when the
governing second order differential equation is converted into
the standard form of X = f(x,u) trivial integrators ensure the
kinematic trajectories are consistent.

In the discrete mechanics setting, the configurations at
time #; are once again split into a dynamic part g; and a
kinematic part p; where we have dropped the d subscript
from the dynamic portion to avoid confusion with a time
index specification. Next the DEL equations are separated
into two separate sets of equations, one for the dynamic
variables and the other for the kinematic variables. The
kinematic variable assumption implies that at some (g, Px)
there will always exist some input to the system uy, that will
satisfy the kinematic DEL equations. Thus we simply drop
this equation and set py; to be a “kinematic input”.

B. State Space Form

Here, temporarily assume that there are no kinematic con-
figuration variables. In order to use classic tools from discrete
system theory (such as linearizations, optimal linear time-
varying control, etc.) we must be able to cast our problem
into the standard nonlinear, first-order explicit difference
equation

Xyt = fr(x, ug)- 5)

This transformation can be done by first noticing that the
second term in Eq. (4) is constant with respect to gy ;.>

2Even though we illustrate this idea with the unforced, unconstrained DEL
equations, analogous reasoning applies equally to systems with forcing and/
or constraints.

Thus, define the following

Pk =D2Lq(qr—1,9x)- (6)

This new variable py is the discrete generalized momentum
that is preserved exactly by the integrator.’ Note that by
defining p; the explicit dependence on g;_1 has disappeared
from the mapping provided by Eq. (4); it is now a one-step
method (qg, pr) — (Gk+1, Pr+1)- As such we now define the

state of the system and the governing difference equation as*
ter = | T = Flue). @)
Pik+1

In this representation the mapping is now explicit, but in
practice, one must still solve the implicit DEL given in
Eq. (4). However, the key insight is that the existence of
f(xx,ux) is guaranteed by the Implicit Function Theorem
(provided D2D1Ly(qk, qk+1,tk,t+1) is non-singular at g, py,
uk).

Without going through the derivation of more complex
forms of the DEL equations or demonstrating their analogous
transformations to the explicit form of Eq. (7) we define
the discrete system state for a general system in the present
framework at a time r = as

dk
Pk (8)

Pk
Vk

X, —

where v; is defined as the finite-difference velocity of the
kinematic configuration variables i.e. vy = % While this
addition to the state is not strictly necessary, in the optimal
control calculations discussed in Section III-B the v, term is
used in the cost function as a term to weight the “control
effort” of the kinematic inputs.

Interestingly, unlike the continuous time setting where the
state typically involves configurations and their velocities,
the state here depends only on configurations. Even the
generalized momentum terms p; can be exactly calculated
from configuration data at two consecutive time steps. This
is beneficial for embedded system control. In a traditional
discrete system representation the state has both configura-
tion and velocity terms i.e. x = [¢ ¢|. In a real-world setting,
if one were to control this discrete system with full-state
feedback one of two things would be necessary — i) noisy
measurements of velocities, or ii) an estimator to fill in
unobserved velocity states. This complexity is eliminated by
the discrete mechanics strategy where only configurations are
needed to completely fill in the state. Finally we define the
new augmented input as i = [u; Pi1], and the augmented

3This conserved momentum will not be the exact momentum of the actual
system but rather it is the exact momentum of a nearby modified Lagrangian
system [13], [5]. In fact every variational integrator method has a conserved
modified Hamiltonian that differs from the system’s actual Hamiltonian by
O(hP) where h is the timestep used in the integrator, and p is order of the
variational integrator [4].

4Although we have not explicitly stated it, u is the input to the system
and may consist of approximated time integrals of forcing terms as well as
information about the trajectory of the kinematic configuration variables.

) (\

Winch .
M t
System\ (zr, h) W?lizle ’
] *—String of
Gravity, g length r

Fig. 1: Schematic of example system including relevant
geometric parameters.

configuration as g = [g; px]- Note that the k+ 1 subscript
on p in # is because at timestep #; the kinematic input to
the system is defined as the configuration of the kinematic
variables at the next timestep, #; .

III. IMPLEMENTATION DETAILS

In this section we discuss the details of the actual im-
plementation of this discrete mechanics framework to an
experimental system.

A. System Model

The example system in this work consists of a single
magnetically-suspended robot driving in the plane with a
mass hanging from an articulated string as shown in Fig. 1.
There are two kinematic inputs to the system, the horizontal
position of the robot x,, and the length of the string r. Thus
the augmented configuration and the augmented inputs are
given by

Xm,k
Gr = Yk and iy = {x’?kH] .)
Xrk Ti+1
Tk
B. Software

The majority of the software implementation for simula-
tions, and integrations is handled by t rep, a Python module
for simulating rigid body mechanical systems in generalized
coordinates®. In trep, the user first defines an arbitrary
mechanical system by specifying properties of transforms in
SE(3) between coordinate systems that follow a tree structure
which scales well to high-degree-of-freedom systems [9].
The user can then add several types of constraints, potential
fields, forces, and kinematic configuration variables to com-
plete the system definition. The dynamics are then discretely
integrated using a midpoint variational integrator [15], [10].

Beyond simple simulations, trep also has the ability to
perform exact first and second derivatives of both the dis-
crete and continuous dynamics, linearizations of the discrete

SSoftware is available for free download at
googlecode.com discussed in more detail in [9].

http://trep.

http://trep.googlecode.com
http://trep.googlecode.com

system about system trajectories, and a nonlinear projection-
based optimization algorithm for trajectory synthesis. For the
results in this work trep was used to generate optimal
system trajectories based on arbitrary, possibly unfeasible
system trajectories. Once an optimal, feasible trajectory was
generated, t rep was also used to determine a time-varying,
stabilizing proportional controller for tracking the optimal
trajectory and linearizations of the system for use in filtering
algorithms.

The optimization algorithm is based on one originally
presented in [6], and further explored in [14], [8], and [12].
One of the primary features of the original algorithm, as it
was stated in [6], was the infinite-dimensional framework
in which the algorithm was developed. This allowed the
optimization to take place in the system’s natural, continuous
time representation wherein powerful adaptive time stepping
integration schemes could be used to integrate all necessary
differential equations. This makes the algorithm more robust
to user-tuning as it removes a modeling decision that could
significantly impact the results.

In [12], a modified discrete-time version of this algorithm
was presented. Variational integrator’s inherent stability and
conservation properties facilitate the use of this algorithm in
a discrete-time setting as the choice of timestep has a much
smaller impact on the results of the optimization. In [12]
the discrete algorithm was successfully used to solve several
trajectory generation problems.

For completeness, a very brief overview of the algorithm
is presented here. Given an initial condition x(0) = xo and
a desired trajectory &; = (x4(k),iiyz(k)) over the discrete
horizon [ko,k¢] where the pair (x;(k),;(k)) may or may not
satisfy the system dynamics, solve the following constrained
optimization problem:

kp—1

minimize J(§) = fz C(k,x(k),a(k)) +m(x(ks)) (10)
k=0

subject to x(k+1) = f(x(k),a(k)), x(0)=xo

with & = (x(k),i(k)). The summation argument and terminal
cost are given by standard LQR terms

Ok, x(k), (k) = (x(k) = xa (k)T Q (x(k) — x4 (k)
+ (k) = g (k)" R (a(k) — it (k))

m(x(tr)) = (x(kp) —xa(ks)) " Pr (x(ky) —xa(ks))
(11b)

(11a)

where Q, R, and P; are positive definite weighting matrices.

To solve this problem starting at iteration n, a descent
direction {" is determined and added to the current iteration
E™ to produce n" = &" + {". The resulting pair n" =
(x"(k),u"(k)) does not obey the system dynamics so we
define a projection operator as a feedback law to project
back onto the feasible set using the following:

X0 = Xp
S (kg

iy — Ky (x — xf)

Xer1 = (12)

Uy =

This yields the next feasible iteration £”. The feedback gain
in Eq. (12) is found by solving a finite-horizon discrete
LQR problem using the discrete linearization about the
current trajectory £" [1]. Now, a new descent direction
¢™1 can be found and added. The resulting infeasible pair
n™*+! is projected, and the process continues until optimality
conditions are satisfied.

C. Experimental Setup

The experimental system consists of a single inverted,
magnetically-suspended robot driving in a plane and control-
ling a winch for string-length control. The robot uses only
digital encoders for motor feedback, and the motor control
loop is closed around the kinematic configuration variables
x, and r.

Optimizations are performed in trep a priori to obtain
desired configuration paths for the kinematic variables x,
and r as well as the full-state feedback stabilizing controller
K (k). Experimental control is handled through the Robot
Operating System (ROS), and full configuration feedback is
obtained only through a single Microsoft Kinect®®. In an
individual trial the result of a trep optimization is loaded
into a ROS node, and using information about the desired
initial configuration of the system a calibration is performed.
Point cloud data from the Kinect is obtained at approximately
30 Hz, and this frequency drives the control frequency of the
entire system. Knowing that the controller will run at 30 Hz,
the optimization is performed assuming a time step of 1/30 s.
Every time the ROS system receives a point cloud from the
Kinect, a processing/ tracking node provides a measurement
of the of the augmented configuration 4. This measurement is
then filtered using a standard extended Kalman Filter (EKF)
algorithm that uses trep to step a variational integrator for
predicting the system state as well as provide linearizations
of the system for the EKF update equations. This filtered
estimate is then passed into the control law given in Eq. (12)
to obtain the ;. The resulting command is then wirelessly
sent to the robot, and it runs a high-frequency control loop
around #z; until a new command is received.

IV. RESULTS

In this section we present both simulation-based and ex-
perimental results obtained by applying the discrete mechan-
ics controller and estimator synthesis outlined in the previous
sections to the sample system described in Section III. We
highlight the benefits of the present framework in a practical
setting.

One of the features of the discrete mechanics framework
presented is the stability of the method over a large range
of time steps. Thus the real-world frequency constraints of a
particular system are easily accommodated. In other words,
given a particular piece of experimental hardware with a
constrained frequency e.g. the Kinect running at 30 Hz, the
control system design and structure can be set to run in
lockstep with the frequency of the sensor. Even in situations

6 All ROS nodes for controlling the experimental system are available at
https://github.com/jarvisschultz/puppeteer_stack

https://github.com/jarvisschultz/puppeteer_stack

04| x Measured ; ’
o Filtered }
02— Reference | 8& i);” |
‘ 5

Ym [m]

—0.4|
| |
0.6 —04 —02 0

X [m]

(a) Open-loop

0.4 x Measured 1 o
o Filtered } .
0.2 | | — Reference 3 i
E ol 2 ﬂ |
S
) |
0.2 | 1
|
—0.4 - 1 N
| | | |
-0.6 —-04 —-02 O 02 04 06
Xm [m]

(b) Closed-loop

Fig. 2: Parametric plots of the dynamic configuration variables for a individual trials of the experimental system. An optimal
reference and a corresponding time-varying, proportional stabilizing controller have been determined using trep. The
difference between the two plots is that in Fig. 2a the reference inputs to the system have been sent to the robot open-
loop, and in Fig. 2b the stabilizing controller is utilized. Note that the last two seconds of the reference trajectory has
(%m,ym) == (0.43,.25) to show the controller’s ability to stabilize to a set point. In Fig. 2a the mass swinging around this

point is clearly seen.

where the sensor has a relatively low update frequency the
stabilizing properties of the controller and the convergence
rates of the estimator are likely to be much better than a
continuous time controller that has been modified to run at
the desired frequency through something like a zero-order
hold transform.

Figure 3 shows simulated effects of the choice of system
representation on performance of the EKF algorithm at a
range of timesteps. Each point on the plot was generated
by running 1000 trials of the filter on a nominal feasible
trajectory for the system described in Fig. 1. In the “pre-
diction” step of the EKF, actual samples from the nominal
trajectory were used i.e. the predictions without additive
noise corresponded exactly with the nominal trajectory. Mea-
surements were simulated by adding Gaussian noise to the
nominal trajectory. For each trial, the L, error between the
filtered signal and the reference signal was determined at
each timestep. These errors were then averaged to produce
an “error norm” for each trial. The error norms were then
averaged, and their standard deviations calculated to produce
the points and error bars on Fig. 3. For the upper, solid
curve the local linearization was performed by evaluating the
infinitesimal derivatives of the continuous dynamics about
the current best estimate, and then using an explicit Euler
approximation to convert this into a discrete linearization.
While this is arguably the simplest possible choice for a
discrete approximation, it is often used in practice because
of its simplicity. For the bottom curve, trep was used to
provide the exact linearization of the discrete mechanics
representation of the system. It is easily seen that as the
filter frequency decreases, the performance of the discrete
mechanics representation significantly outperforms the Euler

0.30 ——————————
Discrete
0.25 H $-2 Mechanics]
Explicit ﬁ
S 0.20 2 Byler /
[}
39 0.15
g /ﬁ
] 010 Kinect
= Frequency —J' /p{)
0.05 v .z
(e/e/____.nr
oo
000 TrTI9T _? L 1 L
1073 1072 107! 10°

timestep [s]

Fig. 3: Plot illustrating variations in EKF filter performance
using two different discrete representations of the continuous
dynamics. Both curves are simulated from 1000 trials, with
Gaussian noise added to produce “measurements”.

approximation. Also note that even at the 30 Hz frequency
of the Kinect®, the mean L, error produced with the Euler
approximation is nearly double the error of the discrete
mechanics representation.

Figure 2 shows an experimental comparison between the
open-loop and the closed-loop performance of the system.
There are several characteristics to note. First, on the length
scale associated with the reference trajectory the Kinect
and associated processing algorithms provide a relatively
noise-free measurement. However the large “jumps” seen
occasionally are handled robustly by the filter. The second
thing to note is that the open-loop trial does a quite poor

1.5 H = Filtered .
= No Filter
1O - — Reference N

p [m/s]

time [s]

Fig. 4: Experimental demonstration of the effects the filtering
algorithm has on the velocity commands sent to the robot.

job of tracking the reference trajectory. This is attributed to
several factors: i) ROS is not actually real-time the mean dt
for the trial in Fig. 2a is 0.0337 with a standard deviation
of 0.004. ii) errors in the initial system configuration iii)
errors the robot’s motor controller iv) not having a perfect
system model. The closed-loop tracking results show that
the system works well. Especially important to note is that
the actual embedded system is quite simple, nothing more
than cheap DC motors, hobbyist electronics and the Kinect
sensor. For controlling such an underactuated, nonlinear, and
lowly damped system, one could imagine far more complex
experimental setups.

Even though the Kinect data appears relatively smooth
in Fig. 2 the EKF is performing an important role. This is
illustrated in Fig. 4. The solid line is the finite-difference
estimate of the derivative of the optimal reference for p.
The other two curves are the actual commands sent to the
robot during two different experimental trials one where the
raw Kinect data has been used for feedback and one where
the EKF algorithm has filtered the Kinect data. It is clearly
seen that the filter yields a much smoother set of controls
for the system.

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a discrete mechanics based
framework for modeling general mechanical systems that is
useful when implementing control systems on an embedded
system. The framework has desirable characteristics of a dis-
crete approximation for use in an embedded system. Firstly,
it is a one-step method that enables one to apply classical dig-
ital control tools. Even though it is only a one step method,
the discrete integrator is guaranteed to perfectly conserve
any system constraints, and has guarantees about energy
behavior and Hamiltonian conservation. Several features of
this framework were illustrated by looking at experimental
and simulated results. While this scheme is slightly more
complex that a simple one-step Euler integration scheme for

approximating continuous systems, the guarantees about its

numerical structure make it particularly appealing for mod-
eling highly nonlinear systems, nearly-conservative systems,
or long time horizon systems. Additionally, the effective
dimension of the system state is the same as that of a one-
step Euler method. Kinematic configuration variables provide
a modeling strategy that facilitates control implementation on
an embedded system, and they are easily incorporated into
this framework.

In this work, we showed that this discrete mechanics
framework yielded better filter performance on a classic EKF
algorithm; this is almost exclusively due to the fact that
the linearization of the discrete mechanics representation
is more accurate than a linearization of an explicit Euler
discrete approximation. Discrete mechanics with variational
integrators also shows promise with sampling based filters
such as a particle filter. Recent work has shown that vari-
ational integrators have equivalent conservation properties
for stochastic systems as well [2]. Investigating the use
of variational integrators for sampling-based filters in an
experimental setting is the next logical progression for this
work.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Dover Publications, Feb. 2007.

[2] N. Bou-Rabee and H. Owhadi, “Stochastic variational integrators,”
IMA Journal of Numerical Analysis, vol. 29, no. 2, pp. 421-443, Apr.
2009.

[3] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems,
ser. Texts in Applied Mathematics. ~New York-Heidelberg-Berlin:
Springer Verlag, 2004, vol. 49.

[4] E. Hairer, C. Lubich, and G. Wanner, “Geometric numerical integration
illustrated by the Stormer/Verlet method,” Acta Numerica, vol. 12, pp.
399-450, 2003.

, Geometric Numerical Integration: Structure-Preserving Algo-

rithms for Ordinary Differential Equations. Springer, Apr. 2006.

[6] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” in IFAC World Congress, Barcelona, Spain,
July 2002.

[71 J. P. Hespanha, Linear Systems Theory.
Princeton Press, sep 2009.

[8] E. Johnson and T. D. Murphey, “Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings,”
in International Conference on Robotics and Automation, Roma, Italy,
Apr. 2007, pp. 330-335.

[9]1 E. R. Johnson and T. D. Murphey, “Scalable variational integrators
for constrained mechanical systems in generalized coordinates,” IEEE
Transactions on Robotics, vol. 25, pp. 1249-1261, Oct. 2009.

[10] O. Junge, J. E. Marsden, and S. Ober-blobaum, “Discrete mechanics
and optimal control,” in JFAC World Congress, July 2005, p. 6.

[11] J. E. Marsden and M. West, “Discrete mechanics and variational
integrators,” Acta Numerica, 2001.

[12] T. Murphey and E. Johnson, “Control aesthetics in software architec-
ture for robotic marionettes,” in American Control Conference (ACC),
2011, July 2011, pp. 3825-3830.

[13] D. Pekarek and T. Murphey, “A backwards error analysis approach
for simulation and control of nonsmooth mechanical systems,” in 2011
50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), Dec. 2011, pp. 6942-6949.

[14] J. Schultz and T. Murphey, “Trajectory generation for underactuated
control of a suspended mass,” in 2012 IEEE International Conference
on Robotics and Automation (ICRA), May 2012, pp. 123-129.

[15] M. West, “Variational integrators,” Ph.D. dissertation, California Insti-
tute of Technology, 2004.

[5]

Princeton, New Jersey:

	INTRODUCTION
	DISCRETE MECHANICS
	Kinematic Configuration Variables
	State Space Form

	Implementation Details
	System Model
	Software
	Experimental Setup

	Results
	Conclusions and Future Work
	References

