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Abstract Trajectory optimization involves both the optimization
of inputs and the feedback regulation of the resulting trajectories.
This article covers the main points of adapting trajectory optimiza-
tion to the numerical routines in discrete mechanics. We start with
a brief description of discrete mechanics and variational integrators
and then move on to linearization, estimation, local projections in
discrete function spaces, and iterative methods in trajectory op-
timization. Throughout, we discuss the results in the context of
open-source software trep that implements all of the techniques for
interconnected rigid body systems.

1 Introduction

Variational and energy-based techniques in numerical integration (Betsch,
2004; Betsch and Leyendecker, 2006; Lew et al., 2003, 2004; Marsen and
West, 2001) have received a great deal of attention recently because of
the long time horizon properties they often exhibit. However, the result-
ing discrete-time approximations of the trajectories are not particularly
amenable to classical techniques in control—the discrete-time equations of
motion are typically implicit, there is no classical notion of state, and local
controllers are not readily computable. Instead, Discrete Mechanics and
Optimal Control (DMOC) (Ober-Blöbaum et al., 2011; Leyendecker et al.,
2010) is an approach that takes the discrete variational approximation and
treats the implicit equations as constraints on a high dimensional optimiza-
tion, for use in a numerical constrained optimization software package. The
DMOC approach has the advantage of encoding all the mechanical informa-
tion into the discrete-time constraints, but has the significant disadvantage
of optimization becoming more challenging as the time resolution improves
(i.e., for every factor of ten decrease in the time step, the dimension of
the optimization increases by an exponent of ten). Moreover, the DMOC
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approach does not provide feedback laws for stabilizing the optimized tra-
jectories.

The work presented in this chapter provides a different approach to opti-
mization of mechanical systems, based on trajectory optimization. All of the
results are formulated directly in terms of the discrete function space, allow-
ing one to use methods that are analogous to methods in infinite-dimensional
function spaces. These lead to numerical methods that iteratively improve
trajectories as well as providing feedback laws—both of which are critical to
embedded systems relying on the resulting optimized trajectories. Signifi-
cant content was pulled from Johnson et al. (2014); Schultz and Murphey
(2013, 2014); Johnson (2012). More information can be obtained from these
sources.

Lastly, this work relies heavily on a software package we have developed
called trep. It is available at http://nxr.northwestern.edu/trep and
it is recommended that the serious reader download trep and explore the
examples presented throughout this chapter. Trep has functionality for
taking an arbitrary tree-based description of a mechanical system (Johnson
and Murphey, 2009) and computing a variational integrator, its continuous
dynamics, its first and second-order linearizations, local optimal controllers,
and nonlinear optimized trajectories. All computations presented in this
chapter were performed in trep.

2 Variational Integrators and the Discrete Action
Principle

In this section we provide a brief overview of variational integrators and
present the specific variational integrator used throughout this chapter.
More detailed introductions and discussions can be found in Kharevych
et al. (2006); West (2004); Lew (2003); Marsen and West (2001).

The idea behind variational integrators is to discretize the action with
respect to time before finding the discrete-time equations of motion. Doing
so leads to integration schemes that avoid common problems associated with
numerically integrating a continuous differential equation. These problems
can occur because the numerical approximations that are introduced do
not respect fundamental mechanical properties like conservation of momen-
tum, energy, and a symplectic form, all of which are relevant to mechanical
systems (both forced and unforced).

The continuous-time dynamics of a mechanical system are described by
the Euler-Lagrange equations (Murray et al., 1994)

d

dt

∂L

∂q̇
− ∂L

∂q
= F (q, q̇, u)
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where q is the system’s generalized coordinates, u represents the external
inputs (e.g, motor torque), L is the Lagrangian (typically kinetic energy
minus potential energy for finite-dimensional mechanical systems), and F
is the forcing function that expresses external forces in the generalized co-
ordinates.

t0 tf

L
(q

,q̇
)

(a) Continuous Action Integral

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,q̇
)

(b) Discrete Action Sum

Figure 1. The continuous Euler-Lagrange equation is derived by minimiz-
ing the action integral (a). The discrete Euler-Lagrange equation is derived
by minimizing the approximating action sum (b).

The Euler-Lagrange equations can be derived from extremizing the ac-
tion integral, typically referred to as the (least) action principle. The action
integral—the integral of the Lagrangian with respect to time along an ar-
bitrary curve in the tangent bundle—is illustrated as the shaded region in
Fig. 1(a). The action principle stipulates that a mechanical system will fol-
low the trajectory that extremizes the action with respect to variations in
q(t). Applying calculus of variations to the action integral shows that it is
extremized by the Euler-Lagrange equation.

A variational integrator is derived by choosing a discrete Lagrangian, Ld
that approximates the action over a discrete time step:

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(s), q̇(s))ds
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where qk is a discrete-time configuration that approximates the trajectory
(i.e. qk ≈ q(tk)). This approximation can be achieved with any quadra-
ture rule; more accurate approximations lead to more accurate integrators
(Marsen and West, 2001). A concrete example of a discrete Lagrangian
approximation is discussed in Sec. 2.1.

By summing the discrete Lagrangian over an arbitrary trajectory, the
action integral is approximated by a discrete action, as shown in Fig. 2.
The action principle is then applied to the action sum to find the discrete
trajectory that extremizes the discrete action. The result of this calculation
is the discrete Euler-Lagrange (DEL) equations:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0

where DnLd is the slot derivative1 of Ld.
The DEL equations depend on the previous, current, and future config-

uration (but they do not depend on the velocity, making this integrator an
appealing representation of dynamics for embedded systems that measure
configurations but not velocities). The DEL equation can also be written
in an equivalent position-momentum form that only depends on the current
and future time steps

pk +D1Ld(qk, qk+1) = 0 (1a)

pk+1 = D2Ld(qk, qk+1) (1b)

where pk is the discrete generalized momentum of the system at time k. (By
these definitions, it should be clear that−D1Ld(qk, qk+1) andD2Ld(qk, qk+1)
are both playing the role of a Legendre transform in discrete time, and are
accordingly referred to as the left and right Legendre transforms, respec-
tively.)

Equation (1) imposes a constraint on the current and future positions
and momenta. Given an initial state pk and qk, (1a) is solved numerically
to find the next configuration qk+1. In general, (1a) is a non-linear equation
that cannot be solved explicitly for qk+1. In practice, the equation is solved
using a numeric method such as the Newton-Raphson algorithm. The next
momentum is then calculated explicitly by (1b). After an update, k is
incremented and the process is repeated to simulate the system for as many
time steps as desired.

1The slot derivative DnL(A1, A2, . . . ) represents the derivative of the function L with

respect to the n-th argument, An. In many cases, the arguments to the function L

will be dropped for clarity and compactness. Hence, it is helpful to keep in mind that

the slot derivative applies to the argument order provided in a function’s definition.
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Variational integrators can be extended to include non-conservative forc-
ing (e.g., a motor torque or damping) by using a discrete form of the
Lagrange-d’Alembert principle (Ober-Blöbaum et al., 2011). The contin-
uous force is approximated by a left and right discrete force, F−d and F+

d :∫ tk+1

tk

F (q(s), q̇(s), u(s)) · δqds

= F−d (qk, qk+1, uk) · δqk + F+
d (qk, qk+1, uk) · δqk+1

where uk is the discretization of the continuous force inputs: uk = u(tk).
As with the discrete Lagrangian, the discrete forcing can be approximated
by any quadrature rule. A specific example is presented in Sec. 2.1.

For clarity, we use the following abbreviations for the discrete Lagrangian
and discrete forces throughout this paper:

Lk = Ld (qk−1, qk)

F±k = F±d (qk−1, qk, uk−1) .

The forced DEL equations are then given by

pk +D1Lk+1 + F−k+1 = 0 (2a)

pk+1 = D2Lk+1 + F+
k+1. (2b)

Again, (2) provides a way to calculate the configuration and momentum at
the next time step from the current time step. Given the previous state
(pk and qk) and the current input (uk), the next configuration is found
by implicitly solving (2a). The momentum at the next time step is then
calculated explicitly by (2b).

In the following section, we provide an example of a variational integrator
for a simple one dimensional system. We will use this example to help
keep the calculations as concrete as possible during the development of the
structured linearization results presented in Section 3.2.

2.1 Example: Pendulum

Consider the pendulum shown in Fig. 2 with m = ` = 1. The pendulum
has a single degree of freedom θ and is controlled by a torque u applied at
the base.

The Lagrangian for the pendulum is

L(θ, θ̇) = 1
2m`

2θ̇2 +mg` cos θ = 1
2 θ̇

2 + g cos θ.
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Figure 2. The pendulum is controlled by a torque at the pivot.

The generalized force due to the torque input is:

F (θ, θ̇, u) = u.

The discrete Lagrangian is found by approximating the integral of the
continuous-time Lagrangian over a short time interval ∆t using the midpoint
rule θ = θk+θk+1

2 and θ̇ = θk+1−θk
∆t :

Ld(θk, θk+1) = L
(
θk+θk+1

2 , θk+1−θk
∆t

)
∆t

= (θk+1−θk)2

2∆t + g∆t cos θk+1+θk
2 .

The forcing is approximated with a combination of a midpoint and forward
rectangle rule (though other choices of quadrature would be fine as well):

F−d (θk, θk+1, uk) = F ( θk+θk+1

2 , θk+1−θk
∆t , uk)∆t = uk∆t

F+
d θk, θk+1, uk = 0.

The first derivatives of Ld are needed to implement the variational inte-
grator in (2):

D1Ld = − θk+1−θk
∆t − g∆t

2 sin θk+1+θk
2 (3)

D2Ld = θk+1−θk
∆t − g∆t

2 sin θk+1+θk
2 . (4)

The variational integrator update equations are found by substituting
(3) into (2a) and (4) into (2b):

pk − θk+1−θk
∆t − g∆t

2 sin θk+1+θk
2 + uk∆t = 0 (5a)

pk+1 = θk+1−θk
∆t − g∆t

2 sin θk+1+θk
2 . (5b)

We choose initial conditions pk = 0.5, qk = θk = 0.2, a time step of
∆t = 0.1s, and an applied torque of uk = 0.8. These values are substituted
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in (5a), and a numeric root-finding algorithm finds the unknown θk+1. In
this case, the Newton-Raphson method was used to find θk+1 = 0.2471.
Finally, the updated discrete momentum is calculated using (5b): pk+1 =
0.3627. Note this example makes it clear that implicitly defined updates
are to be expected, as mentioned earlier in Sec. 2. However, as we will see,
these implicit updates have explicit linearizations that can be computed as
functions of the configuration alone. In Sec. 3 we discuss a choice of state
and quadratures that enable such a linearization.

2.2 Example: trep Pendulum

In this section, we present and discuss the Python code to implement
the pendulum example from the previous section using trep. We begin
with a few simple import statements, and by storing the parameters of the
example as follows:

1 import numpy as np

2 import trep

3 import scipy.optimize as so

4

5 # set mass, length, and gravity:

6 m = 1.0; l = 1.0; g = 9.8;

7

8 # set state and step conditions:

9 pk = 0.5 # discrete generalized momentum

10 qk = 0.2 # theta config

11 uk = 0.8 # input torque

12 dt = 0.1 # timestep

Next we create an empty trep system and then define a list of frames to
describe the system in accordance with trep’s tree structure (Johnson and
Murphey, 2009), and the labels shown in Fig. 2. Then we add the frames
to the system object. Finally, a gravity potential and torque are added to
the system.

14 # create system

15 system = trep.System()

16 # define frames

17 frames = [

18 trep.rz("theta_1", name="PendAngle"), [

19 trep.ty(-l, name="PendMass", mass=m)]]

20 # add frames to system

21 system.import_frames(frames)
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22 # add gravity potential

23 trep.potentials.Gravity(system, (0,-g,0))

24 # add a torque at the base

25 trep.forces.ConfigForce(system, "theta_1", "tau")

In the system description, there are a total of 3 frames. First, there is
a World frame that is implicitly defined; its positive y-axis points up with
respect to gravity. The world frame has a child frame, PendAngle that is
parameterized by a degree-of-freedom, theta 1, specifying a rotation about
the world’s z-axis. Finally, the PendAngle frame has a child, PendMass, with
a mass of m, and located by a constant translation of −l in the PendAngle

y-axis.
The next step is to create and initialize a variational integrator object

as follows:

27 # create and initialize variational integrator

28 mvi = trep.MidpointVI(system)

29 mvi.initialize_from_state(0, np.array([qk]), np.array([pk]))

Now we solve the DEL equations by calling the variational integrator’s step
method as shown in the following:

31 # take single step with VI:

32 mvi.step(mvi.t1+dt, np.array([uk])) # args are t2, u1

Finally, we use the Python module SciPy to numerically solve (5a) and
(5b) so that we can compare the trep results to the ones obtained in the
previous section. Then we print and compare results.

34 # compare with manual computation results:

35 def DEL1(qkp1):

36 return pk - (qkp1-qk)/dt - g*dt/2.*np.sin((qkp1+qk)/

37 2.0) + uk*dt

38 # Implicitly solve DEL1 to get new config

39 qkp1 = so.newton(DEL1, qk)

40 # get new momentum

41 pkp1 = (qkp1-qk)/dt - g*dt/2.0*np.sin((qkp1+qk)/2.0)

42

43 # print results

44 print "=============================================="

45 print "trep VI results:\tanalytical results:"

46 print "=============================================="
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47 print "qk+1 = ",mvi.q2[0],"\t","qk+1 = ",qkp1

48 print "pk+1 = ",mvi.p2[0],"\t","pk+1 = ",pkp1

49 print "=============================================="

Running this complete script produces the following output:

==============================================

trep VI results: analytical results:

==============================================

qk+1 = 0.247136194156 qk+1 = 0.247136194156

pk+1 = 0.362723883111 pk+1 = 0.362723883111

==============================================

Thus trep’s solution and the analytical solution from the previous sec-
tion are in agreement. The complete code for this example is provided
with trep’s source code as the examples/papers/cism2013/pend-single-
step.py file, or the file can be directly accessed at http://git.io/trep-

pend-step.

2.3 Energy Behavior in Variational Integrators

Variational integrators have many desirable numerical properties such as
exact constraint satisfaction and stable energy behavior. The stable energy
behavior can be particularly useful in situations where one is interested
in long simulation time-horizons, nearly conservative systems, or in taking
larger timesteps. As a demonstration of the energy behavior, consider a
simple harmonic oscillator with governing continuous differential equation
given by [

ẋ
ẍ

]
=

[
0 1

−k/m 0

] [
x
ẋ

]
where x is the oscillator’s position. We simulate this system for 1000 seconds
with a second-order midpoint variational integrator, and with a fourth-order
explicit Runge-Kutta integrator with an initial configuration x(0) = 1, an
initial velocity ẋ(0) = 0, parameters k = m = 1, and a timestep of 0.01
seconds. Since this system is conservative, its energy should be constant for
all time. It is clear from Fig. 3 that the Runge-Kutta scheme is artificially
dissipating energy, unlike the variational integrator. Moreover, lower-order
integrators (such as Euler) tend to be even worse, diverging from reasonable
energy behavior much more quickly.
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Figure 3. Energy behavior of a fourth-order Runge-Kutta method com-
pared with a second-order variational integrator; the Runge-Kutta method
is incorrectly dissipating energy.

3 One Step Maps and Linearizations

3.1 Choice of State

In continuous time, the configuration and velocity of a mechanical system
are often concatenated into a single state x =

[
q q̇

]
to create a first-

order representation of the system. This choice cannot be easily used for
the variational integrator because the finite-difference approximation of the
velocity involves configurations at different time steps. Instead, the one-step
representation of the integrator (Hairer et al., 2004) in Eq. (2) suggests that
for the variational integrator a convenient choice for the state is:

xk+1 =

[
qk+1

pk+1

]
= f(xk, uk), (6)

where the function f(xk, uk) is implicitly defined by Eq. (2). However, the
Implicit Function Theorem guarantees that such a function exists provided
that the derivative

Mk+1 = D2D1Lk+1 +D2F
−
k+1 (7)

is non-singular at qk, pk, and uk. For a discussion of situations where Mk+1

is singular, see Johnson et al. (2014). This guarantee justifies abstracting
the discrete dynamics of the variational integrator this way even though the
underlying implementation still calculates the update qk+1 by numerically
solving (2a). The purpose of this abstraction is to define the form for
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the linearization of the discrete dynamics. In the next section, we derive
this linearization and find that the derivatives of the abstract f(xk, uk)
representation are calculated explicitly.

3.2 Linearization of Discrete Trajectories

Analysis and optimal control methods often rely on the first-order lin-
earization of system dynamics about a trajectory (Anderson and Moore,
1990). The first-order linearization of the discrete dynamics for the state-
space form in Eq. (6) is:

δxk+1 =
∂f

∂xk
δxk +

∂f

∂uk
δuk

[
δqk+1

δpk+1

]
=


∂qk+1

∂qk

∂qk+1

∂pk
∂pk+1

∂qk

∂pk+1

∂pk

[δqkδpk

]
+

∂qk+1

∂uk
∂pk+1

∂uk

 δuk. (8)

Six components are required to calculate this linearization. These deriva-
tives are found directly from the variational integrator equations (2), and
all of them result in explicit equations.

Derivatives of qk+1 are found by implicitly differentiating (2a) and solv-

ing for the desired derivative. We start by finding ∂qk+1

∂qk
:

∂
∂qk

[
pk +D1Lk+1 + F−k+1 = 0

]
0 +D1D1Lk+1 +D2D1Lk+1

∂qk+1

∂qk
+D1F

−
k+1

+D2F
−
k+1

∂qk+1

∂qk
= 0[

D2D1Lk+1 +D2F
−
k+1

] ∂qk+1

∂qk
= −

[
D1D1Lk+1 +D1F

−
k+1

]
∂qk+1

∂qk
= −M−1

k+1

[
D1D1Lk+1 +D1F

−
k+1

]
(9)

where Mk+1 is as defined by (7) and is assumed to be non-singular (oth-
erwise the Implicit Function Theorem would not apply, making the state
representation invalid).

The process is repeated to calculate ∂qk+1

∂pk
and ∂qk+1

∂uk
:

∂qk+1

∂pk
= −M−1

k+1 (10)

∂qk+1

∂uk
= −M−1

k+1 ·D3F
−
k+1. (11)

Notice that each of these derivatives depends on the new configuration
qk+1 (e.g, D1D1Lk+1 = D1D1Ld (qk, qk+1)). Before evaluating the deriva-
tives, qk+1 must be found by solving (2a).
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Derivatives of pk+1 are found directly by differentiating (2b):

∂pk+1

∂qk
=
[
D2D2Lk+1 +D2F

+
k+1

] ∂qk+1

∂qk
+

D1D2Lk+1 +D1F
+
k+1 (12)

∂pk+1

∂pk
=
[
D2D2Lk+1 +D2F

+
k+1

] ∂qk+1

∂pk
(13)

∂pk+1

∂uk
=
[
D2D2Lk+1 +D2F

+
k+1

] ∂qk+1

∂uk
+D3F

+
k+1. (14)

These derivatives depend on (9)–(11), so (9)–(11) must be evaluated
first. Once calculated, their values are used in (12)–(14) along with the
known value of qk+1 to find the derivatives of pk+1. Once all six derivatives
are calculated, they are organized into the two matrices in (8) to get the
complete first-order linearization about the current state. Lastly, note that
the linearization is expressed entirely in terms of the discrete Lagrangian’s
dependence on the configuration and the discrete forcing function’s depen-
dence on the configuration and the continuous-time force. This is critical
in understanding how to calculate the linearization without resorting to
symbolic software.

3.3 Example: Pendulum (cont.)

We continue the pendulum example from 2.1 by calculating the first
linearization (again, at the initial conditions pk = 0.5, qk = θk = 0.2, with a
time step of ∆t = 0.1s, and an applied torque of uk = 0.8). The derivatives
of the discrete Lagrangian Ld are:

D1D1Ld = 1
∆t −

g∆t
4 cos θk+1+θk

2 = 9.7610

D2D1Ld = − 1
∆t −

g∆t
4 cos θk+1+θk

2 = −10.2389

D1D2Ld = − 1
∆t −

g∆t
4 cos θk+1+θk

2 = −10.2389

D2D2Ld = 1
∆t −

g∆t
4 cos θk+1+θk

2 = 9.7610.

The derivatives of the discrete forcing are trivial:

D1F
−
d = D2F

−
d = 0

D3F
−
d = ∆t.
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Using these values with (7), we find M−1
k+1 = (−10.2389 + 0)−1 = −0.0976.

These are used with (9)–(11) to calculate the derivatives of qk+1:

∂qk+1

∂qk
= 0.0976 · (9.7610 + 0) = 0.9533

∂qk+1

∂pk
= 0.0976

∂qk+1

∂uk
= 0.0976 · 0.01 = 0.00976.

These values are part of the linearization, but are also required to calculate
the derivatives of pk+1 from (12)–(14).

∂pk+1

∂qk
= (9.7610 + 0) · 0.9533 +−10.2389 + 0 = −0.9333

∂pk+1

∂pk
= (9.7610 + 0) · 0.0976 = 0.9533

∂pk+1

∂uk
= (9.7610 + 0) · 0.00976 + 0 = 0.09533

The six values define the entire first-order linearization:

δxk+1 =

[
0.9533 0.0976
−0.9333 0.9533

]
δxk +

[
0.00976
0.09533

]
δuk.

The first-order linearization frequently appears in analysis applications.
For example, we can examine the controllability matrix of the pendulum at
this configuration to verify that it is linearly controllable:

C =
[
B AB

]
=

[
0.00976 0.0186
0.09533 0.0818

]
rank (C) = 2.

3.4 Example: trep Pendulum (cont.)

As in Sec. 2.2, we will repeat the example of the previous section, but
this time using trep to perform all of the computations. The example script
for this section shares the same first 34 lines as the code in Sec. 2.2. Thus,
we assume that we already have a trep system representing the pendulum
defined, and a variational integrator created, initialized, and have solved for
a single time step. Thus we proceed onto calculating the derivatives of the
discrete Lagrangian.

While trep itself often needs derivatives of the discrete Lagrangian,
it only exposes methods for calculating derivatives of the continuous La-
grangian. However, trep provides all of the necessary continuous deriva-
tives. This illustrates the flexibility of trep; by combining derivatives that
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it does have, we can obtain other derivatives we may be interested in. As-
sume we want to calculate D1D1Ld; let’s first look at the general form of a
midpoint-rule variational integrator

Ld (qk, qk+1) = L

(
qk + qk+1

2
,
qk+1 − qk

∆t

)
∆t. (15)

Note that in this approximation, q is the midpoint value of qk and qk+1 i.e.
q(qk, qk+1) = qk+1+qk

2 ; similarly, q̇(qk, qk+1) = qk+1−qk
∆t . Now, applying the

chain rule to this equation, we can obtain a general expression for D1D1Ld
as

D1D1Ld(qk, qk+1) =
∆t

4

∂2L

∂q∂q
− 1

2

∂2L

∂q̇∂q
− 1

2

∂2L

∂q∂q̇
+

1

∆t

∂2L

∂q̇∂q̇
. (16)

The expressions for D2D1Ld, D1D2Ld, and D2D2Ld are obtained similarly.
With these expressions, the code for calculating the first two derivatives

of the discrete Lagrangian is given by

34 # calc derivatives of discrete Lagrangian:

35 q = system.get_config("theta_1")

36 print "D1D1Ld = ",\

37 dt/4*system.L_dqdq(q,q) - \

38 1/2.*system.L_ddqdq(q,q) - \

39 1/2*system.L_ddqdq(q,q) + \

40 1/dt*system.L_ddqddq(q,q)

41 print "D2D1Ld = ",\

42 dt/4*system.L_dqdq(q,q) + \

43 1/2.*system.L_ddqdq(q,q) - \

44 1/2*system.L_ddqdq(q,q) - \

45 1/dt*system.L_ddqddq(q,q)

The code for calculating the derivatives of qk+1 and pk+1 is seen in the
following:

47 # calc derivatives of qk+1

48 print "dqk+1/dqk = ",mvi.q2_dq1()[0][0]

49 print "dqk+1/dpk = ",mvi.q2_dp1()[0][0]

50 print "dqk+1/duk = ",mvi.q2_du1()[0][0]

51

52 # calc derivatives of pk+1

53 print "dpk+1/dqk = ",mvi.p2_dq1()[0][0]

54 print "dpk+1/dpk = ",mvi.p2_dp1()[0][0]

55 print "dpk+1/duk = ",mvi.p2_du1()[0][0]
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To calculate the linearizations in Eq. (8), we could assemble matrices
of the already calculated derivatives from above. However, to further ex-
plore the components of trep, we will instead use the discopt module.
The discopt module contains convenient wrappers around the variational
integrator components, discrete optimizations, linearizations, and optimal
control tools. The code is as follows:

57 # calculate A and B using discopt module:

58 dsys = discopt.DSystem(mvi, np.array([0,dt]))

59 dsys.set(np.array([qk,pk]),np.array([uk]),0)

60 A = dsys.fdx()

61 B = dsys.fdu()

62 C = np.hstack((B, np.dot(A,B)))

63 print "A = \n",A

64 print "B = \n",B

65 print "C = \n",C

66 print "rank(C) = ",np.rank(C)

The output of the script matches the results of the previous section:

D1D1Ld = 9.7610974193

D2D1Ld = -10.2389025807

dqk+1/dqk = 0.953334338555

dqk+1/dpk = 0.0976667169278

dqk+1/duk = 0.00976667169278

dpk+1/dqk = -0.933313228895

dpk+1/dpk = 0.953334338555

dpk+1/duk = 0.0953334338555

A =

[[ 0.95333434 0.09766672]

[-0.93331323 0.95333434]]

B =

[[ 0.00976667]

[ 0.09533343]]

C =

[[ 0.00976667 0.01862181]

[ 0.09533343 0.08176927]]

rank(C) = 2

The complete code for this example is provided with trep’s source code
as the examples/papers/cism2013/pend-linearization.py file, or the
file can be directly accessed at http://git.io/trep-pend-lin. Note that
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the full script also contains examples of calculating second-order lineariza-
tions.

3.5 Constrained Systems

In this section, we discuss how the approach described in Sec. 3.1 and
Sec. 3.2 to calculate the discrete linearizations extends to constrained vari-
ational integrators. We also present representative examples of second-
order derivative calculations required for second order linearizations. Vari-
ational integrators are particularly well-suited to systems with holonomic
constraints because the update equation for a constrained variational in-
tegrator explicitly incorporates the holonomic constraint. This is opposed
to replacing the holonomic constraint with a locally equivalent acceleration
constraints and then projecting the update onto the feasible set, a common
approach in direct numeric integration of ordinary differential equations.
Variational integrators enforce the holonomic constraint at every time step
while still preserving the symplectic form and conserving momentum.

Variational integrators for constrained systems (Marsen and West, 2001)
are derived using the same Lagrange-multiplier method used in the contin-
uous case (Murray et al., 1994). Given a continuous-time constraint of the
form h(q) = 0, the DEL equations for a forced, constrained variational
integrator are:

pk +D1Lk+1 + F−k+1 −DhT (qk)λk = 0 (17a)

h(qk+1) = 0 (17b)

pk+1 = D2Lk+1 + F+
k+1 (17c)

where λk are the Lagrange multipliers that can be interpreted as discrete-
time constraint forces. In this case, given pk and qk, a numerical root-
finding algorithm solves (17a) and (17b) to find qk+1 and λk. The updated
momentum pk+1 is then explicitly calculated from (17c).

The Lagrange multipliers are completely determined by qk, pk, and uk,
so the state representation from Section 3.1 is unchanged. Accordingly,
the same derivatives are needed to find the linearizations. Rather than
derive every equation, we calculate one component of the first and second
derivatives to demonstrate the process.

For the first-order linearization, we first find ∂qk+1

∂qk
. We start by differ-

entiating (17a):

∂
∂qk

[
pk +D1Lk+1 + F−k+1 −DhT (qk)λk = 0

]
⇒ ∂qk+1

∂qk
= −M−1

k

[
Cqk −DhT (qk)∂λk∂qk

]
(18)
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where
Cqk = D1D1Lk+1 +D1F

−
k+1 −D2hT (qk)λk.

To evaluate this derivative, we must calculate ∂λk
∂qk

. This is found by differ-

entiating (17b), substituting in (18), and solving for ∂λk
∂qk

:

∂
∂qk

[h(qk+1) = 0]

Dh(qk+1)∂qk+1

∂qk
= 0

Dh(qk+1)M−1
k

[
Cqk −DhT (qk)∂λk∂qk

]
= 0

Dh(qk+1)M−1
k Cqk −Dh(qk+1)M−1

k DhT (qk)∂λk∂qk
= 0

∂λk
∂qk

=
[
Dh(qk+1)M−1

k DhT (qk)
]−1

Dh(qk+1)M−1
k Cqk . (19)

To calculate ∂qk+1

∂qk
, the constrained DEL equation (17) is solved numerically

to find qk+1 and λk. These values are used in (19) to find ∂λk
∂qk

. Finally, ∂qk+1

∂qk

is calculated with (18). The same approach is used to find the remaining
components of the first derivative (Johnson et al., 2014), so we do not repeat
the derivation here.

As an illustration of calculating necessary derivatives for a second order

linearization, we continue by calculating ∂2qk+1

∂qk∂qk
.

∂2

∂qk∂qk

[
pk +D1Lk+1 + F−k+1 −DhT (qk)λk = 0

]
⇒ ∂2qk+1

∂qk∂qk
= −M−1

k+1

(
Cqkqk −DhT (qk) ∂2λk

∂qk∂qk

)
(20)

where

Cqkqk =D1D1D1Lk+1 +D1D1F
−
k+1

+
[
D2D1D1Lk+1 +D2D1F

−
k+1

+D1D2D1Lk+1 +D1D2F
−
k+1

]
∂qk+1

∂qk

+
[
D2D2D1Lk+1 +D2D2F

−
k+1

]
◦
(
∂qk+1

∂qk
, ∂qk+1

∂qk

)
−D3hT (qk)λk − 2D2hT (qk)∂λk∂qk

.

In the above, the notation M ◦ (X,Y ) represents a bilinear operator M
operating on X and Y . We find the corresponding second derivative of λk
by differentiating (17b) twice:
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∂2

∂qk∂qk
[h(qk+1) = 0]

D2h(qk+1) ◦
(
∂qk+1

∂qk
, ∂qk+1

∂qk

)
+Dh(qk+1) ∂

2qk+1

∂qk∂qk
= 0.

We substitute in (20) and solve for ∂2λk
∂qk∂qk

:

∂2λk
∂qk∂qk

=
[
Dh(qk+1)M−1

k+1Dh
T (qk)

]
·[

Dh(qk+1)M−1
k+1Cqkqk −D2h(qk+1) ◦

(
∂qk+1

∂qk
, ∂qk+1

∂qk

)]
. (21)

To calculate this ∂2qk+1

∂qk∂qk
, we solve for the next state, calculate the first

derivatives, evaluate (21) to find ∂2λk
∂qk∂qk

, and finally evaluate (20) to find
the second derivative. This same procedure is used to calculate the other
components of the constrained second derivative. Further details of these
calculations are available in Johnson et al. (2014).

Note that the constrained momentum update (17c) is identical to the
unconstrained case (2b), so the constrained linearizations are identical to
the unconstrained case.

3.6 Examples of Linearizations in Control and Estimation

In Sec. 3.2, we mentioned that in optimal control and estimation tech-
niques often rely on being able to calculate linearizations about trajectories.
In this section, we provide several examples of classic optimal control and
estimation techniques utilizing variational integrators and their correspond-
ing linearizations.

Example: LQR Control Here we use the Linear Quadratic Regulator
(LQR) method to generate a stabilizing feedback controller for the mechani-
cal marionette in Fig. 4. The marionette has 22 dynamic configuration vari-
ables, 18 kinematic configuration variables (Johnson and Murphey, 2007),
and 6 holonomic constraints. The corresponding state-space model has 80
state and 18 input variables.

For a non-linear system like the marionette, the dynamics can be lin-
earized about a known trajectory. The LQR solution for the linearization
yields a feedback law that stabilizes the system near the known trajectory
(subject to conditions on local controllability and observability (Anderson
and Moore, 1990)).
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Figure 4. The marionette model has 40 configuration variables and 6 holo-
nomic constraints.

The discrete LQR problem finds an optimal feedback law for a discrete
linear system (Anderson and Moore, 1990):

zk+1 = Akzk +Bkµk,

(where zk is a perturbation to xk). For the linearized dynamics about

a non-linear system’s trajectory, this corresponds to Ak = ∂f(xk,uk)
∂xk

and

Bk = ∂f(xk,uk)
∂uk

. The solution to the discrete LQR problem is found by
solving the discrete Ricatti equation:

Pk = Qk +ATk Pk+1Ak −ATk Pk+1Bk
[
Rk +BTk Pk+1Bk

]−1
BTk Pk+1Ak

(22a)

Pkf = Qkf (22b)

where Qk and Rk correspond to the cost of the linearized state and inputs,
and Qkf determines the terminal cost of the linearized state. The Ricatti
equation is solved to find Pk by recursively evaluating (22a) backwards in
time from the boundary condition (22b). The solution is used to calculate
a stabilizing feedback law:

Kk =
[
Rk +BTk Pk+1Bk

]−1
BTk Pk+1Bk.

The marionette was simulated and linearized about a 10.0 second trajec-
tory using the midpoint variational integrator in trep. The reference tra-
jectory was generated by changing the string lengths of the arms and legs
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Figure 5. (a)The discrete LQR feedback law significantly improves the
norm of the error response of the marionette compared to the open-loop
simulation. (b) The discrete LQR feedback law also significantly improves
the individual error response of the marionette compared to the open-loop
simulation. This is the trajectory of the configuration of the vertical orien-
tation of the torso.

using ±0.1 sin(0.6πt) input signals. The linearization was used to create a
locally stabilizing controller by solving the discrete LQR problem with iden-
tity for each cost matrix. A perturbation of 0.1 rad was then added to the
initial condition of the vertical orientation of the torso and the simulation
was performed with and without the added stabilizing feedback controller.

The norm of the resulting error between the perturbed and original tra-
jectories is shown in Fig. 5(a) and the trajectory of the vertical orientation
of the torso is shown in Fig. 5(b) as an example of stabilization of one of the
states. The closed-loop trajectory converges significantly faster compared
to the open-loop trajectory as expected. The ability to generate locally
stabilizing feedback laws for complex systems that are simulated with vari-
ational integrators is a useful application of the methods described here.
The source code for this example is distributed with trep’s source code in
the file examples/papers/cism2013/marionette.py. The code can also
be found at http://git.io/trep-marionette-opt.

The optimization was performed on an Intel i7-2760QM CPU at 2.40GHz.
The simulation takes approximately 2.11 ms per step, the linearization takes
approximately 1.12 ms per step. The second-order linearization takes ap-
proximately 22.15 ms per step, though it was not required for this example.
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Figure 6. Performance with a variational integrator EKF applied to a free-
swinging pendulum.

Example: Extended Kalman Filter In an Extended Kalman Filter
(EKF), a nonlinear system is linearized about a state estimate to provide a
local, linear approximation allowing the application of a standard Kalman
filter. The one-step nature of Eq. (6) plus the linearizations of Sec. 3.2
allow the application of EKFs to nonlinear, variational integrator-based
discrete systems. An illustration of this can be seen in Fig. 6. This plot
was produced by applying an EKF to the same pendulum as in Sec. 2.2
and Sec. 3.3. The pendulum was simulated in a free swing to produce
the ground-truth trajectory. Zero-mean Gaussian noise was added to the
ground-truth trajectory for θ to provide simulated measurement values of
configuration alone. EKF predictions were made by using the same DEL
equations as in the previous sections, and the necessary linearizations were
computed as in Sec. 3.2. Fig. 6 shows that the noise is appropriately filtered
by the EKF. For more results on utilizing variational integrators in standard
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estimation algorithms see Schultz and Murphey (2014, 2013).

4 Trajectory Optimization

This section discusses projection operator-based trajectory optimization for
continuous and discrete dynamic systems. This strategy iteratively improves
a known trajectory until a local minimum of the cost is found. The opti-
mization works locally for systems with constraints and with underactuated
systems.

Trajectory optimization using projection operators has been studied pre-
viously in the context of continuous-time systems (Hauser, 2002). It is dis-
cussed here for reference and comparison with the recently-formulated dis-
crete time equivalent (Johnson, 2012). The presented algorithm applies to
arbitrary discrete time dynamic systems, but is motivated by discrete time
models based on variational integrators as described in previous sections.

The trajectory optimization problem is stated for both discrete and con-
tinuous systems in Sec. 4.1. The projection operator is introduced in Sec. 4.2
and some important properties of the discrete operator are presented in
Sec. 4.3. Section 4.4 introduces the optimization algorithm. Each iteration
of the algorithm can be broken into three steps that are each discussed sep-
arately in Sec. 4.4. The first step is calculating the projection operator, the
second is calculating the descent direction, and the third is performing a
line search. These three steps apply to both the continuous and discrete
time domains, although the present focus is on discrete systems.

Results of several example applications are presented in Sec. 5. The
first example, presented in Sec. 5.1, involves solving the optimal control
to invert and stabilize a cart-pendulum system. Sec. 5.2 presents detailed
trep code for solving a trajectory optimization problem for the same cart-
pendulum, but a simpler reference is chosen to reduce the amount of code
required. Finally, Sec. 5.3 solves the optimal control problem for the high
degree-of-freedom marionette discussed in Section 3.6.

4.1 Problem Statements

We seek trajectories for a continuous or discrete dynamic system that
minimize an appropriately differentiable cost function. Let T be the set
of dynamically admissible trajectories for a system. The trajectory space
is embedded in a inner product space V so that T ⊆ V . In continuous
time, T = {ξ = (x, u) ∈ V : ẋ(t) = f(x(t), u(t), t)}. In discrete time, T =
{ξ = (x, u) ∈ V : x(k + 1) = f(x(k), u(k), k)}.

Throughout this section, ξ = (x, u) is always an element of T and δξ =
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(δx, δu) is always an element of the tangent trajectory space TT . Elements
of V use the symbols ξ̄ = (x̄, ū) while elements in the tangent space TV
use the notation δξ̄ = (δx̄, δū). (Elements ξ̄ ∈ V will be referred to as
trajectories even though they may not satisfy the system dynamics.)

The discrete trajectory space is formally finite-dimensional. However,
in this derivation it is treated as arbtirary-dimensional like the continuous
trajectory space. This approach leads to an algorithm that explicitly takes
advantage of the discrete dynamics, and avoids directly optimizing over the
entire (potentially very large) dimensionality of the discrete space. For the
remainder of the chapter, we refer to both spaces simply as function spaces.

Continuous Problem Statement: Given an initial trajectory ξ0 =
(x, u) ∈ T , find

ξ∗ = arg min
ξ∈T

h(ξ)

where h(ξ) =

∫ tf

t0

`(x(t), u(t), t)dt+m(x(tf )).

Discrete Problem Statement: Given an initial trajectory ξ0 =
(x, u) ∈ T , find

ξ∗ = arg min
ξ∈T

h(ξ)

where h(ξ) =

kf−1∑
k=k0

`(x(k), u(k), k) +m(x(kf )).

In both cases, the initial condition x(0) of the trajectory may be included
in the optimization or considered fixed.

For example, suppose we want the system to track a desired state path
xd as closely as possible. We can treat this as an optimization problem with
the costs

`(x, u, k) = (x− xd(k))TQ(x− xd(k)) + uTRu

m(x) = (x− xd(kf ))TQ(x− xd(kf ))
(23)

where Q and R are positive definite matrices. By solving this optimization,
we obtain a trajectory that approximates the desired path even if the path
is not dynamically feasible or the system is underactuated.

These are constrained optimizations because solutions must satisfy the
dynamics of the system. The approach described here introduces a projec-
tion operator that takes arbitrary curves in V and projects them to nearby
trajectories in T . The projection operator effectively removes the dynamics
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constraint, at least locally, at the cost of needing to include the projection
operator in the unconstrained optimization. The unconstrained optimiza-
tion is then solved using an iterative approach that improves the cost at
each iteration by calculating a descent direction, and by performing a one
dimensional line search along that direction.

The next section introduces projection operators and their properties.

4.2 Projection Operators

The optimization algorithm is based on a projection operator ξ = P(ξ̄)
that maps curves ξ̄ ∈ V to nearby trajectories of the system ξ ∈ T .
The implementation details of discrete projection operators are discussed
in Sec. 4.3. We begin by introducing some common properties of both
continuous and discrete projection operators.

The continuous and discrete projection operators are both created by
integrating the system dynamics while tracking the ξ̄ with a linear feedback
law. To be projections, both operators must have the property that if ξ ∈ T ,
then P(ξ) = ξ. A consequence of this is that the projections are idempotent
i.e.

P(P(ξ)) = P(ξ). (24)

Both projection operators are twice differentiable2. The first derivative
δξ = DP(ξ̄) ◦ δξ̄ is also a projection:

DP(ξ̄) ◦ δξ̄ = DP(ξ̄) ◦DP(ξ̄) ◦ δξ̄. (25)

The derivative maps elements of δξ̄ ∈ Tξ̄V to tangent trajectories δξ ∈
TP(ξ̄)T . The derivative has the useful invariance property that it is the

same whether evaluated at ξ̄ or the projected trajectory P(ξ̄):

DP(ξ̄) ◦ δξ̄ = DP(P(ξ̄)) ◦ δξ̄. (26)

These properties are important for calculating the descent direction in
Sec. 4.4.

2We presume that the system dynamics are twice differentiable.
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4.3 Discrete Projection Operators

The projection operator for a discrete dynamic system x(k+1) = f(x(k), u(k), k)
is given by

ξ = (x, u) =P
(
ξ̄ = (x̄, ū)

)
:

x(k0) = x̄(k0) (27a)

x(k + 1) = f(x(k), u(k), k) (27b)

u(k) = ū(k)−K(k)(x(k)− x̄(k)) (27c)

where K(k) is a stabilizing feedback law for the dynamic system f(x, u, k).
K(k) is typically found by solving the discrete LQR (Anderson and Moore,
1990; Locatelli, 2001) problem for the linearization of the non-linear system
about the current trajectory. As mentioned in Sec. 3.6 the LQR problem
for a nonlinear system linearized about a particular trajectory provides a
stabilizing feedback about the trajectory.

Proposition 1. The discrete projection operator defined by (27) satisfies
the idempotent projection property (24).

Proof. Let (x1, u1) = P(x̄, ū), then:

k x1(k) u1(k)
0 x̄(0) ū(0) +K(0)(x1(0)− x̄(0)) = ū(0)
1 f(x̄(0), ū(0)) ū(1) +K(1)(x1(1)− x̄(1))
2 f(x1(1), u1(1)) ū(2) +K(2)(x1(2)− x̄(2))
3 f(x1(2), u1(2)) ū(3) +K(3)(x1(3)− x̄(3))

...

Applying the projection again, let (x2, u2) = P(x1, u1):

k x2(k) u2(k)
0 x1(0) = x̄(0) u1(0) +K(0)(x2(0)− x1(0)) = u1(0)
1 f(x̄(0), ū(0)) = x1(1) u1(1) +K(1)(x2(1)− x1(1)) = u1(1)
2 f(x1(1), u1(1)) = x1(2) u1(2) +K(2)(x2(2)− x1(2)) = u1(2)
3 f(x1(2), u2(2)) = x1(3) u1(3) +K(3)(x2(3)− x1(3)) = u1(3)

...

By induction, the trajectories are equal.
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First Derivative of P(ξ̄) The derivative of the projection operator δξ =
DP(ξ̄) ◦ δξ̄ is found by differentiating (27) in the direction δξ̄ = (δx̄, δū):

δξ = (δx, δu) =DP(ξ̄) ◦ δξ̄ :

ξ = P(ξ̄) (28a)

δx(k0) = δx̄(k0) (28b)

δx(k + 1) =
∂f

∂x
(k)δx(k) +

∂f

∂u
(k)δu(k) (28c)

= Df(k) ◦ δξ(k)

δu(k) = δū(k)−K(k)(δx(k)− δx̄(k)) (28d)

where the notation ∂f
∂x (k) represents ∂f

∂x (x(k), u(k), k), and also applies to
∂f
∂u (k) and Df(k). Note that P is differentiable if f is differentiable.

The derivative of the discrete projection operator is a projection it-
self that maps ξ̄ to trajectories of the discrete linear system δx(k + 1) =
A(k)δx(k) + B(k)δu(k) with A(k) = ∂f

∂x (k) and B(k) = ∂f
∂u (k). Therefore,

the discrete DP(ξ̄) ◦ δξ̄ satisfies the idempotent projection property (25).
The invariance property (26) follows directly from (28a).
There are limitations to the projection operators defined here. In gen-

eral, it is difficult to find globally stabilizing linear feedback laws for non-
linear systems. We typically settle for a locally stabilizing controller about
a known trajectory ξ0 and work with curves ξ̄ sufficiently close to ξ0. This
is well suited for optimization problems as each iteration improves a known
trajectory by only a small perturbation.

Although the details of the continuous projection operators were not dis-
cussed here, both continuous and discrete projection operators have identi-
cal properties and are represented by identical notation. They differ only
in implementation details. The next section takes advantage of the similar-
ities and identical notation to describe the overall optimization algorithm
for both the continuous and discrete domains simultaneously.

4.4 Line Searches and Iterative Methods in Optimization

The trajectory optimization problem described in Sec. 4.1 is constrained
to solutions that satisfy the system dynamics. This constraint is problematic
for an iterative gradient descent algorithm. Even if the current iterate is a
valid trajectory ξi ∈ T , and the descent direction is guaranteed to be in the
tangent space of ξi: δξ ∈ TξiT , linear combinations of the two ξi + δξi will
not, in general, be an admissible trajectory because the trajectory manifold
for the nonlinear system is not a vector space. The projection operator
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provides a means to remove the constraint, allowing the optimization to
take place in the unconstrained inner product space V by defining a new
cost g(ξ̄) = h(P(ξ̄)) to optimize.

Proposition 2. The optimizations minξ̄ g(ξ̄) and minξ∈T h(ξ) are equiva-

lent in the sense that if ξ̄∗ minimizes g(·), then ξ∗ = P(ξ̄∗) minimizes h(·),
and if ξ∗ minimizes h(·), then ξ∗ also minimizes g(·)

Proof. Suppose ξ∗ minimizes h(·) but not g(·). Then there exists δξ̄ ∈ V
such that:

Dg(ξ∗) ◦ δξ̄ 6= 0

Dh(ξ∗) ◦DP(ξ∗) ◦ δξ̄ 6= 0.

Letting δξ = DP(ξ∗) ◦ δξ̄ ∈ Tξ∗T :

Dh(ξ∗) ◦ δξ 6= 0,

but this contradicts ξ∗ being a minimizer of h(·).
On the other hand, suppose ξ̄∗ minimizes g(·) but ξ = P(ξ̄∗) does not

minimize h(·), then there exists δξ ∈ Tξ∗T such that:

Dh(ξ) ◦ δξ 6= 0

Dh(P(ξ̄∗)) ◦DP(P(ξ̄∗)) ◦ δξ 6= 0

Dg(ξ̄∗) ◦ δξ 6= 0,

but this contradicts ξ̄∗ being a minimizer of g(·).

This unconstrained optimization can be solved using iterative numeric
methods. The overall algorithm is shown in Alg. 1. Each iteration involves
designing a projection operator, choosing a descent direction, and perform-
ing a search along the descent direction. These steps are described in detail
in the following subsections.

Creating the Projection Operator Both continuous and discrete pro-
jection operators rely on a stabilizing linear feedback law. In the optimiza-
tion algorithm, each iteration starts with a known trajectory and searches
for new nearby trajectories along a descent direction calculated at the cur-
rent iterate. This local nature allows us to work with projection operators
that are only locally stabilizing rather than requiring global stability. A
updated stabilizing feedback law is required for each new trajectory.
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Algorithm 1 Trajectory Optimization

Require: ξ0 ∈ T
Ensure: ξi = arg minξ∈T h(ξ)

1: i← 0
2: loop
3: K ← CreateProjection(ξi)
4: δξ ← FindDescentDirection(ξi,K)
5: if |δξ| ≈ 0 then
6: return ξi
7: end if
8: λ← PerformLineSearch(ξi, δξ)
9: ξi+1 ← P(ξi + λδξ)

10: end loop

While any algorithm that provides a stabilizing linear feedback law will
work, the LQR optimal control problem is a convenient method because it
only requires data already available from simulation. Specifically, it only
requires linearizations of the dynamics, which are already necessary for the
trajectory optimization, and it handles arbitrary trajectories so long as they
are differentiable. The choice of the cost matrices Q and R in the LQR
problem can have a significant impact on performance. Experience has
shown that the choice Q = I, R = I generally provides acceptable feedback
laws.

Finding the Descent Direction In gradient-descent optimization, the
descent direction is calculated by minimizing a quadratic approximation of
the cost near each iterate. For finite-dimensional problems, the resulting
descent direction is z = −M−1Dg(xi), where M is the quadratic term
of the approximation. Common choices are M = I, which leads to the
steepest descent algorithm, and M = D2g(xi), which leads to Newton’s
method (Kelley, 1999). This algorithm is simple, but it relies on a matrix
representation of the model M .

In trajectory optimization, the vector space is a function space, so no
matrix representation exists. Instead, the approximation of the cost is mini-
mized directly at each iteration. This section develops the quadratic approx-
imation of the cost, and shows that the required minimization is equivalent
to a Linear Quadratic (LQ) optimization problem for the linearization of
the system about the current trajectory.
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The cost is approximated near the current trajectory by the Taylor series:

g(ξi + δξ̄) ≈ g(ξi) +Dg(ξi) ◦ δξ̄ + 1
2D

2g(ξi) ◦ (δξ̄, δξ̄)

= h(P(ξi)) +Dh(P(ξi)) ◦DP(ξi) ◦ δξ̄ + 1
2Dh(P(ξi)) ◦D2P(ξi) ◦ (δξ̄, δξ̄)

+ 1
2D

2h(P(ξi)) ◦ (DP(ξi) ◦ δξ̄,DP(ξi) ◦ δξ̄)

where ξi is the current trajectory and ξ̄ is a small perturbation from the
trajectory.

The curve ξi is guaranteed to be an admissible trajectory (i.e, ξi ∈ T )
by the initial condition of the algorithm and the projection step at the end
of each iteration (Line 9 in Alg. 1). Applying the identity ξ = P(ξ) ∀ ξ ∈ T ,
and applying the invariance property (26) to D2P(·), the model becomes

= h(ξi)+Dh(ξi)◦DP(ξi)◦δξ̄+ 1
2Dh(ξi)◦D2P(ξi)◦(DP(ξi)◦δξ̄,DP(ξi)◦δξ̄)
+ 1

2D
2h(ξi) ◦ (DP(ξi) ◦ δξ̄,DP(ξi) ◦ δξ̄)

= h(ξi) +Dh(ξi) ◦DP(ξi) ◦ δξ̄ + 1
2q(ξ) ◦ (DP(ξi) ◦ δξ̄,DP(ξi) ◦ δξ̄) (29)

where the second order terms have been collected into the quadratic model :

q(ξ) ◦ (δξ, δξ) = Dh(ξi) ◦D2P(ξi) ◦ (δξ, δξ) +D2h(ξi) ◦ (δξ, δξ). (30)

The descent direction is found by minimizing (29) over all directions in
TV :

δξ̄
∗

= argmin
δξ̄

h(ξi)+Dh(ξi)◦DP(ξi)◦δξ̄+ 1
2q(ξ)◦(DP(ξi)◦δξ̄,DP(ξi)◦δξ̄).

Noting that δξ̄ is always projected into TξiT byDP(ξi) in this unconstrained
optimization, the search is restricted to descent directions in this space:

δξ∗ = argmin
δξ∈TξiT

2Dh(ξi) ◦ δξ + q(ξ) ◦ (δξ, δξ) (31)

where we have dropped the constant term h(ξi) and multiplied the cost by
2 without affecting the optimal direction.

In this case, the constrained optimization problem (31) is easier to solve
than the unconstrained case because every element δξ ∈ TξiT is a trajectory
of a (continuous or discrete) linear system. It is a linear optimal control
problem with a cost comprising a linear and quadratic term, better known
as a Linear Quadratic (LQ) problem.
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Solutions to the LQ problem are found by solving a set of (continuous
or discrete) Ricatti equations. The solution provides an affine control law
δu = −Kδx+ C where K and C are (continuous or discrete) time-varying
values found from the Ricatti equations. Thus, (31) is solved by finding the
optimal feedback law from the LQ solution, choosing an initial condition
for the descent direction, and integrating the system forward with the feed-
back input. The trajectory found by the forward simulation is the descent
direction that locally minimizes the cost approximation. Details of solving
(31) for the discrete case are discussed in Sec. 4.5.

In order for (31) to have a well defined minimum, the quadratic model
must be positive definite:

q(ξ) ◦ (δξ, δξ) > 0 ∀ δξ ∈ TξT .
The quadratic model (30) is not guaranteed to be positive definite. Addi-

tionally, even if it is positive definite, it is a well-known result in optimization
that descent directions calculated from the second derivative often perform
poorly when the current iteration is not near the optimal solution (Kelley,
1999). The quadratic model q is therefore generalized, as in finite dimen-
sional optimization, to an arbitrary bilinear model to avoid these problems.
The specific form of this bilinear model depends on the time domain. The
discrete form for one possible model is discussed in Sec. 4.5.

The completed algorithm for calculating the descent direction is shown in
Alg. 2. The following section discusses the initial conditions for the descent
direction.

Algorithm 2 Calculating the Descent Direction

Require: ξi ∈ T and q(ξ) ◦ (δξ, δξ) > 0
1: K, C ← SolveLQProblem()
2: δx0 = ChooseInitialCondition()
3: δξ = SimulateLinearizedSystem(dx0, δu = −Kδx− C)
4: return δξ

If we take δξ and use it in g(ξ + λδξ), then there should be some λ
sufficiently small that g(ξ + λδξ) < g(ξ) (because δξ is a local descent
direction). But how do we ensure that iterating on this process leads to a
sequence that converges to an optimizer? This is the subject of the next
section.

Performing the Line Search The line search is required in iterative
optimization to guarantee a sufficient decrease in the cost of each new it-
erate (Kelley, 1995). In trajectory optimization, the line search plays an
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Figure 7. If one starts with a large value of λ and systematically decreases
it until g(ξ+λδξ) < g(ξ)+αλDg(ξ)◦δξ, an iterative optimization algorithm
is guaranteed to converge. This figure was generated using the trep method
trep.discopt.DOptimizer.descent plot.

additional role by reducing the size of the descent step until the new tra-
jectory is in the stabilizable subspace of the current projection operator.
Otherwise, the line search is identical to the finite dimensional case, and
any number of existing line search algorithms can be used.

A modified Armijo line search (Armijo, 1966) is shown in Alg. 3. The
original Armijo requirement simply states that for a choice of α, there is a
choice of λ such that g(ξ + λδξ) < g(ξ) + αλDg(ξ) ◦ δξ, and that satisfying
this choice at every iteration guarantees convergence. This can visualized
in the Fig. 7. Note the additional check on line 5 to guarantee that the
perturbed trajectory is successfully stabilized by the projection operator.
There are several indications that a trajectory is not successfully stabilized
including state variables, Ricatti variables, or control gains tending towards
infinity. With an implicit dynamics update provided by a variational inte-
grator an unsuccessful projection usually results in failure of the root-finding
algorithm for solving the DEL equations.

31



Algorithm 3 Armijo Line Search

Require: ξ ∈ T , δξ ∈ TξT , α ∈ [0, 1] and β ∈ (0, 1)
Ensure: g(ξ + λδξ) < g(ξ) + αλDg(ξ) ◦ δξ

1: m← 0
2: loop
3: λ = βm

4: ξn = P(ξ + λδξ)
5: if the projection stabilized then
6: if g(ξ + λδξ) < h(ξ) + αλDg(ξ) ◦ δξ then
7: return λ
8: end if
9: end if

10: m← m+ 1
11: end loop

4.5 LQ problems and Finding Descent Directions

Model for Steepest Descent Defining q(ξ) ◦ (δξ, δξ) = 〈δξ, δξ〉, the
descent direction optimization (31) becomes

δξ∗ = arg min
δξ∈TξiT

2Dh(ξ) ◦ δξ + 〈δξ, δξ〉

= arg min
δξ∈TξiT

2Dh(ξ) ◦ δξ + ||δξ||2.

The quadratic term of this cost depends solely on the magnitude of ξ̄, so the
optimization finds the direction that minimizes the first-order linear term.
This is the steepest descent method. It generally has slower convergence
rates than Newton’s method near the optimum (linear vs. quadratic con-
vergence), but often performs better far from the optimizer and is less costly
to compute.

Descent Direction Computation The generalized quadratic term in
discrete time is:

q(ξ) ◦ (δξ, δξ) =

kf−1∑
k=k0

[
δx(k)
δu(k)

]T [
Q(k) S(k)
ST (k) R(k)

] [
δx(k)
δu(k)

]
+ δxT (kf )Q(kf )δx(kf ). (32)

Expanding (31) for the discrete case:

δξ∗ = arg min
δξ

2Dh(ξ) ◦ δξ + q(ξ) ◦ (δξ, δξ)
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= arg min
δξ

kf−1∑
k=k0

[
2

[
∂`

∂x
(k)

∂`

∂u
(k)

] [
δx(k)
δu(k)

]

+

[
δx(k)
δu(k)

]T [
Q(k) S(k)
ST (k) R(k)

] [
δx(k)
δu(k)

]]
+ 2Dm(x(kf ))δx(k0) + δxT (kf )Q(kf )δx(kf ). (33)

This is the discrete LQ problem. The LQ problem definition and solution
are standard in linear systems theory (Anderson and Moore, 1990). The
LQ problem is solved by three discrete Ricatti equations for P (k), b(k), and
c(k) that calculate the optimal input to minimize this cost. The optimal
input is an affine feedback law of the form δu(k) = −K(k)δx(k) − C(k).
Once the optimal input is found, the linear system is simulated forward in
time using the input, and the simulated trajectory becomes the numeric
descent direction δξ.

5 Experiments and Examples

5.1 Pendulum on a Cart

This section deals with the pendulum on a cart shown in Fig. 8. The
pendulum is optimized in continuous and discrete time to find a trajectory
that moves the pendulum from a hanging position to an inverted one. The
source code for this example is distributed with trep in the file examples/

pend-on-cart-optimization.py or it can be found at http://git.io/

trep-cart-pend-invert.
The pendulum on a cart is actuated by moving the cart horizontally.

There is no joint torque applied directly to the pendulum. This creates a
singularity in the dynamics. When the pendulum is horizontal, accelerating
the cart no longer applies a torque to the pendulum.

The desired trajectory moves the pendulum from a hanging position to
the inverted position and back again, so the system must pass through this
singularity. However, if we use an initial trajectory for the optimization of
the pendulum hanging in the stable position, the optimization will not cross
the singularity. It will converge to a trajectory that swings the pendulum
to just below the horizontal position.

Instead a sequence of progressively more difficult reference trajectories
was used to generate a sequence of initial trajectories that are closer to
the final, optimal solution. To find initial trajectories that move past the
system’s singularity, a fictitious input was added to directly apply a torque
to the pendulum. This fictitious input does not actually exist, but it is

33

http://git.io/trep-cart-pend-invert
http://git.io/trep-cart-pend-invert


x

θ

Figure 8. The pendulum on a cart is controlled by a horizontal force acting
on the cart.

added to remove the singularity and allow the optimization to converge to
an inverting trajectory.

The optimization for the system with the fictitious input was run three
times. Initially, a low cost was associated with the fictitious torque. In the
following two optimizations, the cost was drastically increased. After the
last optimization, the applied torque was essentially unused because of the
associated cost. The trajectory for the final optimization was then used as
the initial trajectory for the original problem with no fictitious input added.

This optimization was performed in both continuous and discrete time.
The final results are shown in Fig. 9. Both optimizations converge to essen-
tially the same trajectory. As can be seen, the final trajectory approximates
the desired path. The path cannot be tracked exactly because of the limited
dynamics of the system.

The discrete time optimization completes in 112 seconds on a 2.2GHz
processor. Each iteration takes between 2 and 3 seconds depending on the
number of Armijo steps taken.

Fig. 10 shows convergence plots for the continuous and discrete optimiza-
tions during one of the intermediate optimizations. The discrete optimiza-
tion converges in considerably fewer steps than the continuous one. The
discrete time optimization was also more numerically robust. It tolerated
larger ratios between the maximum and minimum costs of the individual
states and reliably converged to stricter terminal conditions.

The continuous optimization, on the other hand, was more sensitive to
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Figure 9. Both optimizations converge to the same trajectory for the angle
of the pendulum.
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Figure 10. Convergence plots for continuous and discrete time optimiza-
tions from a simulated desired trajectory.

35



the optimization parameters. Large cost ratios create stiffness that cause the
descent direction calculation to fail when the Ricatti equation is numerically
integrated. The discrete optimization is able to converge for ratios as high as
103 : 10−3 whereas the ratio had to be reduced to 100 : 1 for the continuous
optimization to proceed. In practice, large ratios allow the optimization to
ignore components of the desired trajectory so that other components can
be tracked more closely.

The terminal conditions also had to be relaxed for the continuous op-
timization to formally converge near the optimal solution. This is largely
due to the error introduced by numeric integration being larger than the
descent tolerance. The discrete optimization reliably converges with a ter-
minal condition of |Dg(ξ) ◦ δξ| < 10−6. The condition was relaxed to
|Dg(ξ) ◦ δξ| < 10−2 for the continuous optimization.

5.2 Example: trep Cart-Pendulum Trajectory Optimization

In this section we present trep code that performs a full trajectory op-
timization for the cart-pendulum system discussed in the previous section.
The dynamic singularity that exists at ±π/2 was avoided entirely to allow
for less code. To avoid the singularity the pendulum starts at the unstable
equilibrium and the reference trajectory never passes through the singular-
ity. Avoiding the singularity entirely alleviates the need for the sequence of
optimizations discussed in Sec. 5.1. The reference for θ is given by

θd =


π if 0 < t < 3

π − (αd − π) sin(π2 (t− 3)) if 3 ≤ t < 7.

π if t ≤ 10

For the rest of the state (the cart’s x-position and two momenta), the ref-
erence is zero for all time. The initial state isX(0) = [x(0) θ(0) px(0) pθ(0)] =
[0 π 0 0]; thus the system starts at rest at its unstable equilibrium. The
reference trajectory describes tipping the pendulum over to a peak angle of
αd and then bringing it back up to the unstable equilibrium.

To begin the code, we import relevant modules, set constants related to
the system and the simulation, and write a function that will allow us to
calculate the reference trajectory for θd as follows:

1 from math import pi

2 import numpy as np

3 import trep

4 import trep.visual as visual

5 import matplotlib.pylab as mp

6 import trep.discopt as discopt

36



7

8 # set mass, length, and gravity:

9 m = 1.0; l = 1.0; g = 9.8; mc = 1;

10

11 # define initial state

12 q0 = np.array([0, pi]) # x = [x_cart, theta]

13 p0 = np.array([0, 0])

14 X0 = np.hstack([q0,p0])

15

16 # define time parameters:

17 dt = 0.1

18 tf = 10.

19

20 # define reference trajectory

21 ad = 7*pi/8.

22 def fref(t):

23 if 0<t and t<3:

24 return pi

25 elif 3<=t and t<7:

26 return pi + (ad-pi)*np.sin(pi/4.*(t-3))

27 elif t<=10:

28 return pi

29 else:

30 print "Error!"

Note that we have set the reference angle as αd = 7π/8. The next segment
creates a simple trep model representing the system:

32 # create system

33 system = trep.System()

34 # define frames

35 frames = [

36 trep.tx("x_cart", name="CartFrame", mass=mc), [

37 trep.rz("theta", name="PendulumBase"), [

38 trep.ty(-l, name="Pendulum", mass=m)]]]

39 # add frames to system

40 system.import_frames(frames)

41 # add gravity potential

42 trep.potentials.Gravity(system, (0,-g,0))

43 # add a horizontal force on the cart

44 trep.forces.ConfigForce(system, "x_cart", "cart_force")

Now we create a vector of times, a variational integrator object, and a
discrete system object.
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46 # create a variational integrator, and a discrete system

47 t = np.arange(0,tf+dt,dt)

48 mvi = trep.MidpointVI(system)

49 dsys = discopt.DSystem(mvi, t)

Thus far, we have only used trep functionality that has already been
demonstrated in previous sections. Next, we are going to build discrete
states and input trajectories defining both an initial iterate and a reference.
We will use a trep convenience function, build trajectory, that automat-
ically returns arrays of the correct size for trep.discopt.DSystem object
where any non-specified components are set to zero.

51 # create an initial guess and reference trajectory

52 (Xinit,Uinit) = dsys.build_trajectory([q0.tolist()]*len(t))

53 qref = [[0, fref(x)] for x in t]

54 (Xref,Uref) = dsys.build_trajectory(qref)

Now we create matrices representing the Q and R weighting matrices
in the Eq. (23). Then we instantiate a cost object, and use that object to
instantiate an optimizer object. Note that we set the cost on θ to be several
orders of magnitude higher than that of x, and they are both significantly
higher than the cost on the momenta. This results in a strong preference
for tipping the pendulum over, and a willingness to deviate from x = 0 in
order to do so.

56 # create cost functions:

57 Q = np.diag([100, 50000, 0.1, 0.1])

58 R = np.diag([1])

59 cost = discopt.DCost(Xref, Uref, Q, R)

60

61 # define an optimizer object

62 optimizer = discopt.DOptimizer(dsys, cost)

The final step is to perform the full trajectory optimization, and plot the
results. We set the optimizer to use four steps of gradient descent before
moving to Newton’s method. Note that this optimization could be entirely
solved with gradient descent, but the faster convergence of Newton’s method
is convenient for an example problem.

64 # setup and perform optimization

65 optimizer.first_method_iterations = 4
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Figure 11. Image showing the reference configuration trajectory and the
optimized configuration trajectory for the example cart-pendulum system
of Sec. 5.2. The lower curves are x and the upper curves are θ.

66 finished, X, U = optimizer.optimize(Xinit, Uinit)

67

68 mp.hold(True)

69 l1 = mp.plot(t, Xref[:,0:2],"--",lw=2, color="gray")[0]

70 l2 = mp.plot(t, X[:,0:2],lw=2,color="black")[0]

71 mp.hold(False)

72 mp.legend([l1,l2],["Reference", "Optimal"],

73 loc="lower right")

74 mp.xlabel("time [s]")

75 mp.show()

In Fig. 11 it is clear that the optimal θ trajectory tracks the reference
much better than the optimal x trajectory. This is in agreement with the
chosen costs and makes sense because the system is nonminimum phase
near the inverted equillibrium.
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Figure 12. Convergence plots for continuous and discrete time optimiza-
tions from a simulated desired trajectory.

5.3 Example: Marionette Nonlinear Optimization

We again consider the model of a humanoid marionette shown in Fig. 4.
The marionette has 40 configuration variables and is actuated by 6 strings.
The strings are modeled as holonomic constraints. Kinematic configuration
variables control the two-dimensional position of the end-point of each string
as well as the string length Johnson and Murphey (2007). There are no joint
torques and only slight damping.

Two optimizations are discussed in the following subsections. The first
optimization uses a desired trajectory that was generated separately by
simulating the system, and the second discusses an optimization with a
reference trajectory generated by human motion capture data.

Desired Motion: Simulated Trajectory A desired trajectory was cre-
ated by simulating the system forward in time. The lengths of the arm
and leg strings were varied sinusoidally to create a walking motion. The
configuration trajectory was saved. The rest of the state (e.g, configuration
velocity or discrete momentum) and the simulation inputs were discarded
and replaced with uniformly zero trajectories. This results in a smooth ref-
erence trajectory that we expect the puppet to be able to track, but is still
an infeasible trajectory.

The marionette was optimized to the desired trajectory in both con-
tinuous and discrete time. Both optimizations successfully converged to
solutions that track the desired configuration very well. Convergence plots
for both optimizations are shown in Fig. 12. The source code for the dis-
crete optimization is distributed with trep in the file examples/puppet-

optimization.py.
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In this case, the continuous optimization initially converges faster than
the discrete one. It tracks the desired trajectory almost perfectly after
a single step. The discrete optimization makes slow progress initially but
converges quickly after about five iterations. The discrete optimization takes
5:50s to finish. Each iteration takes between 15 and 60 seconds depending
on the descent direction type and number of Armijo steps.

Although the convergence plot is flattering for the continuous optimiza-
tion, there were numerous problems. As with the pendulum example of
Sec. 5.1, the continuous optimization was sensitive to the optimization pa-
rameters. Large ratios between the maximum and minimum state cost cause
the optimization to fail. The terminal conditions had to be relaxed again as
well. The discrete time optimization suffers from neither of these problems.

Desired Motion: Motion Capture Data A more practical application
of the trajectory optimization is finding trajectories to track data acquired
from a motion capture system. In this example, a desired trajectory was
generated using a Microsoft Kinect R© to record a student walking in place.
This process is illustrated in Fig. 13.

In this case, the continuous optimization was unable to converge. The
discrete optimization converged successfully and found a trajectory that
closely approximates the student’s movement. Fig. 14 plots the desired
trajectory and optimization result for the angle of the right elbow as an
example. The trajectory found by the optimization tracks the desired tra-
jectory very well. However, a large amount of noise was introduced. This is
most likely caused by too large of a ratio between the weight of the config-
uration portion of the state compared the discrete momentum portions and
the cost of the inputs.

6 Conclusion

Variational integrators provide an appealing alternative to numerically solv-
ing the equations of motion for mechanical systems. By representing varia-
tional integrators as discrete dynamic systems and calculating the lineariza-
tion of the associated one-step map, their utility is extended to applications
requiring analysis and optimal control. This approach reduces complexity,
potential for error, and extraneous work compared to using a variational
integrator for simulation while doing the analysis and optimization in the
continuous domain with a separate set of equations. Moreover, it leads to
feedback laws that are expressed purely in terms of configuration variables
(instead of configurations and configuration velocities).

The methods described here can be efficiently implemented by using a
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Figure 13. These three images show a single frame from the motion-capture
optimization. The left-most picture shows images recorded by a Microsoft
Kinect. The middle figure is the motion capture data found from the image.
The right-most figure is the optimized trajectory.

recursive tree representation to calculate the required derivatives of the dis-
crete Lagrangian and forcing function. The approach accommodates exter-
nal forcing and holonomic constraints as described here, and is compatible
with kinematic configuration variables (Johnson and Murphey, 2007; John-
son, 2012). Additionally, this method could be extended to calculate higher
derivatives if needed.
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