
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017 1

Distributed Voronoi Neighbor Identification from
Inter-Robot Distances

Matthew L. Elwin, Randy A. Freeman, and Kevin M. Lynch

Abstract—Algorithms for identifying Voronoi neighbors and
constructing Voronoi regions are useful in many distributed
robotics applications. Existing methods that perform these tasks
using only the distances between robots assign coordinates to
each potential neighbor before applying another algorithm to find
the Voronoi neighbors. Our method finds the Voronoi neighbors
more efficiently; identification occurs directly from inter-robot
distances, without first assigning coordinates. We prove the
algorithm’s correctness, analyze its computational complexity,
and demonstrate its effectiveness in the presence of noise via
simulation with an experimentally validated sensor model.

Index Terms—Sensor networks, distributed robot systems,
computational geometry.

I. INTRODUCTION

VORONOI diagrams are useful in many multi-robot ap-
plications. When the position of each robot is considered

as a generator point for the Voronoi diagram, a given robot’s
Voronoi region represents the area that is closer to that robot
than to any other. This property makes Voronoi diagrams
attractive for tasks such as distributed coverage control [1], [2],
[3], environmental estimation [4], [5], and querying in spatial
databases [6]. Additionally, the average number of Voronoi
neighbors per robot is constant and, in the planar case consid-
ered here, is at most six [7]. By communicating with only their
Voronoi neighbors, robots can maintain network connectivity
while reducing the resource usage of distributed algorithms
whose memory and computation requirements increase with
the number of communication neighbors.

Many algorithms exist for finding Voronoi diagrams (and
their dual, Delaunay triangulations). These algorithms assume
knowledge of the robot positions and include the incremental,
divide and conquer, and plane sweep approaches [7].

In a distributed setting, the algorithm of [8] allows robots in
a sensor network to construct their Voronoi region, assuming
that every robot knows its own position. When robots cannot
directly communicate with all their Voronoi neighbors the
methods of [9] and [10] can be employed.

When robots have only relative distance measurements,
finding their Voronoi neighbors and regions becomes more

Manuscript received September 10, 2016; Revised December 26, 2016;
Accepted January 20, 2017.

This paper was recommended for publication by Editor Nak Young Chong
upon evaluation of the Associate Editor and Reviewers’ comments. This work
is supported by the Office of Naval Research, grant N00014-13-1-0331.

The authors are with the McCormick School of Engi-
neering, Northwestern University, Evanston, IL, USA (email:
{elwin,freeman,kmlynch}@{u.,eecs.,}northwestern.edu).

Digital Object Identifier (DOI): 10.1109/LRA.2017.2665696

difficult. One approach is to use inter-robot distance mea-
surements to localize robots in a coordinate system and then
proceed to find Voronoi regions using traditional methods.
Extensive reviews of localization are in [11], [12].

In contrast to existing methods, our algorithm allows robots
to determine their Voronoi neighbors directly from inter-robot
distance measurements, without first performing localization.
The algorithm depends on only basic arithmetic operations and
terminates after visiting each Voronoi neighbor; thus it can be
significantly more efficient than first requiring localization of
nearby robots. The algorithm preserves topological relation-
ships between neighbors in the Voronoi graph, allowing robots
to detect if they are on the boundary of the convex hull of the
group without additional computation. Once identified (and
only if desired), the Voronoi region can be described in local
coordinates; the topological information from the identification
stage makes this step easier than solving a general localization
problem and may make localizing non-Voronoi neighbors
unnecessary. In local coordinates, the shape of the Voronoi
region can be determined, although its location and orientation
in the plane will be unknown. The edges of the Voronoi region
are associated with the neighbor that induced them. The basic
algorithm requires one communication step; adding another
communication round allows the robots to compute transfor-
mations between their own and their neighbors’ regions. If one
robot knows its absolute position and orientation, the robots
can be placed in a global coordinate system.

We test the algorithm with noisy measurements using the
received signal strength indicator (RSSI) of an XBee radio.
Simulations with an empirically validated XBee RSSI noise
model indicate that error in the identification results is pro-
portional to the measurement noise magnitude.

II. PROBLEM SETUP

A. The Robots

Consider n ≥ 3 robots with unique identifiers i ∈ I and po-
sitions pi ∈ P ⊂ R2, where I = 1 . . . n and P = {p1, . . . , pn}
is the set of the robots’ positions. The robots communicate
with and sense the distance to nearby robots. We model these
interactions using the weighted undirected detection graph G
and assume that the robots associate incoming measurements
and communication packets with the appropriate robot iden-
tifier. The vertices of G correspond to the robots. An edge
exists between vertices i and j in G whenever robots i and
j communicate with and sense each other. If an edge exists
between vertices i and j, its weight eij is (σij+σji)/2, where
σij is robot i’s (possibly noisy) distance measurement to robot

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

j. If no such edge exists eij = ∞. Robots communicate all
their measurements to their detection neighbors; thus all the
robots can compute eij between themselves and their detection
neighbors. Let dij = ‖pi − pj‖ be the Euclidean distance
between robots i and j. Then, for noise-free sensors, eij = dij .

B. Voronoi and Delaunay

Every robot has a Voronoi region Ωi, which contains the
points that are closer to it than to any other robot:

Ωi ≡ {q : ‖q − pi‖ ≤ ‖q − pj‖ for j 6= i, j ∈ I, q ∈ R2}.

The set of Voronoi regions for all robots is the Voronoi
diagram, V(P) = {Ω1, . . . ,Ωn}. The robot positions pi
are the generator points of the Voronoi diagram. If two
Voronoi regions intersect (Ωi ∩ Ωj 6= ∅ for i, j ∈ I) that
intersection is a Voronoi edge and robots i and j are Voronoi
neighbors; our algorithm lets robots identify these neighbors
using communication and inter-robot distances. The set of
robot i’s Voronoi neighbors is Vi.

To avoid degenerate cases we assume the following:

Assumption 1. No four robots in I lie on the same circle.

Assumption 2. No three robots in I lie on the same line.

For randomly placed robots with noisy inter-robot distance
measurements, these assumptions will be satisfied because
circles and lines in R2 have Lebesgue measure zero.

The Delaunay triangulation D(P) is a triangulation with
vertices (called Delaunay vertices) located at the robot posi-
tions P . An edge of D(P) (called a Delaunay edge) exists
between two Delaunay vertices whenever the corresponding
robots are Voronoi neighbors. A Delaunay triangle is any
triangle formed by three Delaunay edges. Thus two Voronoi
neighbors {i, j} form a Delaunay edge, and three unordered
pairs of Voronoi neighbors, {i, j}, {j, k}, and {k, i} form
the edges of Delaunay triangle {i, j, k}. The three robots
composing a Delaunay triangle are mutual Voronoi neighbors,
as they are Voronoi neighbors of each other. Our assumptions
lead to the following property of Delaunay triangulations:

Lemma 1. Under Assumptions 1 and 2, the Delaunay trian-
gulation is a unique tessellation spanning P .

Proof. See Property D1 in [7].

The circle passing through the vertices {pi, pj , pk} of a
triangle τ is its circumcircle C(pi, pj , pk); the circumcircle’s
center is the circumcenter c(pi, pj , pk) and its radius is the
circumradius r(pi, pj , pk). We also use r(d1, d2, d3) to be the
circumradius of a triangle with side lengths d1, d2, and d3 and
r(A) to be the radius of circle A. A circumcircle (or triangle)
whose interior contains no generator points (equivalently,
robots) is called empty.

Lemma 2. A triangle with vertices in P is Delaunay if and
only if its circumcircle is empty. A triangulation spanning P
is Delaunay if and only if all of its triangles are Delaunay.

Proof. Properties D1, D5, and D6 in [7].

Delaunay edges are either external and incident to exactly
one Delaunay triangle or internal and incident to exactly two
Delaunay triangles. The boundary of the convex hull of P is
CH(P). Internal and external edges are related to CH(P):

Lemma 3. Delaunay edge {i, j} is either on CH(P) and
external or not on CH(P) and internal.

Proof. Derived from Property D2 in [7].

We now state some classical geometric facts.

Lemma 4. The circumcenter of a triangle lies at the intersec-
tion of the perpendicular bisectors of its sides.

Lemma 5. The circumcenter of a triangle τ lies:
• outside it, in the positive cone formed by the two sides

created by the obtuse angle, if and only if τ is obtuse,
• on its longest side’s midpoint, if and only if τ is right,
• inside τ , if and only if τ is acute.

Let U(A, p, q) and u(A, p, q) be the major and minor arcs
corresponding to chord {p, q} of circle A (see Figure 1).

Lemma 6. Let A and B be non-coincident circles that
intersect at points p and q, such that r(A) ≥ r(B). Then
U(A, p, q) lies outside B and u(A, p, q) lies inside B.

Proof. Omitted for brevity.

C. Graphs

The Delaunay graph is induced by the Delaunay trian-
gulation: its vertices correspond to the robots and an edge
with weight dij exists between any vertices i and j that
are connected by a Delaunay edge. Voronoi neighbors and
Delaunay graph neighbors are equivalent.

A path in a graph is a sequence of m vertices {v1 . . . , vm}
(vk ∈ I) with no repeated elements except possibly v1 = vm,
such that {vi, vi+1}, i = 1, . . . ,m−1 is an edge in the graph.
Consecutive path vertices are neighbors and the edges between
those vertices are on the path. A path contains the edges and
vertices that are on it. A path’s length is the sum of the weights
of its edges. A cycle is a path where v1 = vm.

A path can be flipped by reversing the order of its elements.
A cycle can be rotated by removing its first element and
appending its second element to the end. A path and all its
flips and rotations form a path class, an equivalence class of
paths. Every path in a path class contains the same vertices
and edges. Therefore, a path class contains a vertex or an edge
if any (and therefore all) paths in it contain that vertex or edge.

Vertices vi and vj are connected when a path containing vi
and vj exists. The distance d(vi, vj) between vertices vi and
vj is the length of the shortest path between the vertices, or
infinity if no such path exists. A graph is connected if every
vertex is connected to every other vertex.

Let Q be a path class containing edge {vi, vj}. A subpath
of Q is a path whose elements are a subsequence of a path in
Q. The left subpath of Q, with respect to vertex pair (vi, vj),
is the longest subpath of Q that has vi as its first element and
does not contain the edge {vi, vj} (see Figure 1).

The following lemmas relate to paths in a Delaunay graph.

ELWIN et al.: DISTRIBUTED VORONOI NEIGHBOR IDENTIFICATION FROM INTER-ROBOT DISTANCES 3

Fig. 1. Left: Chord {p, q} divides circle A into two arcs: the major arc
(longer, black) and the minor arc (shorter, red). Right: Left subpath (black)
of paths {1, 2, 3, 4, 5} (top) and {1, 2, 3, 4, 1} (bottom), induced by pair
(3, 4). In this example, the left subpath contains all vertices on the original
path that, without edge {3, 4}, remain connected to vertex 3.

Lemma 7. Robot i’s Voronoi neighbors Vi can be ordered to
form a path in the Delaunay graph. All such Delaunay paths
belong to the Delaunay path class, denoted Di.

Proof. The result follows from Lemmas 1 and 3.

Lemma 8. Delaunay path class Di contains edge {j, k} if
and only if robots {i, j, k} are mutual Voronoi neighbors.

Proof. Omitted for brevity.

Lemma 9. All paths in the Delaunay path class Di are cycles
if and only if robot i is not on CH(P).

Proof. The result follows from Lemma 3.

Lemma 10. Any cycle that contains only Voronoi neighbors
of robot i contains all the Voronoi neighbors of robot i.

Proof. The result follows from Lemmas 7 and 9.

D. Metric Space Embeddings

Connected undirected graphs are finite metric spaces: the
vertices are the space’s elements and the distance between two
vertices is the length of the shortest path between them [13].
Let X and Y be metric spaces with respective metrics ρ and
σ, and consider a mapping η : X → Y . If, for D ≥ 1, there
exists a number γ > 0 such that

γρ(x, y) ≤ σ(η(x), η(y)) ≤ γDρ(x, y) (1)

then η is a D-embedding. The distortion δ of η is the
smallest D such that η is a D-embedding. Distortion captures
a notion of distance between metric spaces and therefore,
between graphs (since connected undirected graphs are metric
spaces) [13]. Distortion can also be viewed as the minimum
factor such that, after scaling all distances in metric space
X by a constant γ, any distance in metric space Y can be
achieved by an additional scaling between 1 and δ [13].

Voronoi neighbor identification is an embedding of the
metric space associated with the detection graph G (defined
in Section II-A) into the metric space associated with the
Delaunay graph. Likewise, localization is an embedding of
the metric space associated with G into Euclidean space [14].
In Section IV-C we use distortion to analyze errors in our
Voronoi identification algorithm due to measurement noise.

III. VORONOI NEIGHBOR IDENTIFICATION

Our Voronoi identification algorithm relies on relationships
between Voronoi neighbors, circumcircles, and half-planes.
Section III-A establishes these relationships and shows how to
compute them using only inter-robot distances. Section III-B

Fig. 2. Theorem 1. All robots except i and a must be outside circle A (green,
centered at pi with radius r(A)) because a is the robot closest to i. However,
a robot located at point q ∈ P cannot be both inside circle C(pi, pa, pb)
(black) and outside A when r(q, pi, pa) ≥ r(pi, pa, pb). For q to be inside
C(pi, pa, pb) it must, by Lemma 6, lie on arc u(C(q, pi, pa), pi, pa) (solid
red), which must be inside circle B (blue circle centered at midpoint of pi
and pa with radius r(A)/2). Circle B, however, is always inside circle A.

then uses these geometric results to develop and prove the
correctness of our Voronoi identification algorithm.

A. Geometry

We first prove some properties about Voronoi diagrams
using only the distances between robots. Let Ii = I \ i.

Lemma 11. When the robot a is selected such that

a = arg min
a∈Ii

‖pi − pa‖ (2)

the robots a and i are Voronoi neighbors.

Proof. Property V5 in [7].

Lemma 11 shows that robot a, the robot closest to i, is
always a Voronoi neighbor of i.1

Theorem 1, depicted in Figure 2, lets robot i find a mutual
Voronoi neighbor of itself and robot a using the circumradius
of a triangle with side lengths d1, d2, and d3, given by

r(d1, d2, d3) =

√
d21d

2
2d

2
3

2d21(d22 + d23)− (d22 − d23)2 − d41
. (3)

Theorem 1. When the robot b is chosen such that

b = arg min
b∈Ii\a

r(‖pi − pa‖, ‖pa − pb‖, ‖pb − pi‖) (4)

robots i, a, and b are mutual Voronoi neighbors.

Proof. Assume that robots i, a, and b are not mutual Voronoi
neighbors. Then triangle {i, a, b} is not Delaunay and, by
Lemma 2, a robot at position q ∈ P must be inside circum-
circle C(pi, pa, pb). Figure 2 and omitted details show that no
such q exists. Thus triangle {i, a, b} is Delaunay and robots i,
a, and b are mutual Voronoi neighbors.

We now introduce some concepts that allow robot i to find
additional Voronoi neighbors. Let Lij be the line through robot
positions pi and pj . This line divides R2 into two open half-
planes: H(i, j, k), which does not contain the position pk of
robot k and H̃(i, j, k), which contains pk. By Assumption 2,
every robot other than i or j is located in one of these half-
planes. Let H(i, j, k) and H̃(i, j, k) be the robots located in
H(i, j, k) and H̃(i, j, k), respectively.

Lemma 12 provides conditions under which mutual Voronoi
neighbors exist. It refers to Figure 3.

1If multiple robots satisfy Equation (2), any of them can be used.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

Fig. 3. Lemma 12. When robots i, j, and l are mutual Voronoi neighbors, l
must be in H(i, j, k): the red points indicate potential locations for robot l
that contradict triangle {i, j, k} (black) being Delaunay. If H(i, j, k) contains
a robot, then Delaunay edge {i, j} does not lie on CH(P) and is one side
of two Delaunay triangles. One triangle is {i, j, k} and an l ∈ H(i, j, k) can
be chosen such that the other triangle is {i, j, l} (gray).

Lemma 12. Let robots i, j, and k be mutual Voronoi neigh-
bors. Robots i and j have a mutual Voronoi neighbor l 6= k
if and only if H(i, j, k) is not empty. Furthermore, if such an
l exists, l ∈ H(i, j, k).

Proof. Sufficiency: Triangle {i, j, l} is Delaunay. If l ∈
H̃(i, j, k) all cases, by Lemmas 1 and 2, lead to contradiction
(see Figure 3). Thus, l 6∈ H̃(i, j, k) so l ∈ H(i, j, k).

Necessity: Robot l exists in H(i, j, k) so pl is in H(i, j, k).
Since pk is in H̃(i, j, k), Delaunay edge {i, j} is not on
CH(P) and, by Lemma 3, it is internal. Therefore, edge {i, j}
must be incident to two Delaunay triangles. One of these
triangles is {i, j, k}. Denote the other triangle {i, j, t}. The
existence of this triangle implies the existence of a robot t 6= k
that is a Voronoi neighbor of robots i and j. The sufficiency
argument of this proof implies t ∈ H(i, j, k).

Theorem 2, depicted in Figure 4, lets robot i determine
a Voronoi neighbor of itself and j, given mutual Voronoi
neighbors {i, j, k}. It must compute the signed circumradius
r̂(·) of a triangle in terms of its side lengths:

r̂(d1, d2, d3) =

{
r(d1, d2, d3) if obtuse(d1, d2, d3) = 0

−r(d1, d2, d3) if obtuse(d1, d2, d3) = 1,

where

obtuse(d1, d2, d3) =

{
1 d3 > d1 , d3 > d2 , d

2
1 + d22 < d23

0 otherwise.

Note that obtuse(d1, d2, d3) = 1 when the angle opposite the
side corresponding to d3 is obtuse.

Theorem 2. Let robots i, j, and k be mutual Voronoi neigh-
bors and assume that H(i, j, k) is non-empty. Then robots i
and j have a mutual Voronoi neighbor l 6= k, with

l = arg min
l∈H(i,j,k)

r̂(‖pi − pl‖, ‖pj − pl‖, ‖pi − pj‖). (5)

Proof. Lemma 12 implies that a Voronoi neighbor of i and
j exists in H(i, j, k), regardless of H̃(i, j, k). We therefore
assume, without loss of generality, that H̃(i, j, k) = {k} and
show that the robot l satisfying Equation (5) is a Voronoi
neighbor of robots i and j.

Let circle C(p) = C(pi, pj , p), circumcenter c(p) =
c(pi, pj , p), and signed circumradius r̂(p) = r̂(‖pi−p‖, ‖pj−
p‖, ‖pi−pj‖), for p ∈ H(i, j, k). By Lemma 4, c(pk) and c(pl)
lie on the perpendicular bisector of edge {i, j}. Therefore,
Lemma 5 implies that

r̂(p) =

r (C(p)) if c(p) ∈ H(i, j, k)

−r (C(p)) if c(p) ∈ H̃(i, j, k)

0 otherwise.

(6)

Fig. 4. Theorem 2. When circle C(pl) (black) has the smallest signed
circumradius, any other circumcircle C(q), for a robot located at point
q ∈ H(pi, pj , pk), must have its circumcenter c(q) to the “left” of
circumcenter c(pl). Therefore, the arc u(q) (solid red) must be to the “left”
of arc u(pl) (solid black). Because q must be on u(q) it can never be inside
of C(pl) and therefore triangle {i, j, l} is Delaunay. The horizontal gray lines
(from top to bottom) indicate the signed distances h(pl), d(pl), h(q), and
d(q). In this configuration, h(pl) is negative.

Let h(p) be the signed perpendicular distance between c(p)
and edge {i, j}, with h(p) < 0 when c(p) ∈ H̃(i, j, k)
and h(p) ≥ 0 otherwise. As |h(p)| decreases, r(C(p)) must
decrease. When h(p) > 0, r̂(p) = r(p) and when h(p) ≤ 0,
r̂(p) = −r(x). Thus, r̂(p) < r̂(q) if and only if h(p) < h(q).

The next three cases show that no robot located at a point
q ∈ H(i, j, k) is inside C(pl) when l satisfies Equation (5).
h(q) < h(pl): In this case r̂(pl) violates Equation (5).
h(q) = h(pl): This case violates Assumption 1.
h(q) > h(pl): Let u(p) be the arc of C(p) that lies in
H(i, j, k) and let d(p) be the perpendicular distance from
edge {i, j} to the base of u(p). Then q lies on arc u(q) and
d(p) decreases with h(p). Thus d(q) > d(pl), which implies
that u(q) (and therefore q) is outside C(pl) (otherwise u(q)
and u(pl) would intersect). Therefore, C(pl) is empty. By
Lemma 2, triangle {i, j, l} is Delaunay and robots i, j, and l
are mutual Voronoi neighbors.

To use Theorem 2, robot i determines which of its detection
neighbors are in H(i, j, k), which is equivalent to determining
if robot positions pl and pk are on opposite sides of the line
Lij passing through points pi and pj .

To determine whether robots k and l are on the same or
opposite sides of Lij , we first define a condition T and two
quantities U and W , based on inter-robot distances:

T = (dik ≤ djk ∧ dil ≤ djl) ∨ (dik > djk ∧ dil > djl),

U = (fl − gl)(fl + gl)(fk − gk)(fk + gk),

W = d2ij(f
2
l + f2k + g2l + g2k − d2ij − 2d2lk),

where ft = min(dit, djt) and gt = max(dit, djt), t ∈ {k, l}.
Theorem 3, which refers to Figure 5, uses these quantities

to determine if pk and pl are on opposite sides of line Lij .

Theorem 3. Robots k and l are on opposite sides of the line
Lij if and only if Sijkl < 0, where

Sijkl =

{
W − U if T

W + U otherwise.
(7)

Proof. Without loss of generality, we assign local coordinates
to the robot locations (see Figure 5).2 Let pi = (0, 0) and
pj = (0, dij). Let αt (t ∈ {k, l}) be the angle of triangle
{i, k, t} opposite side {i, t} if dit ≤ djt or opposite side {j, t}
otherwise. That is (from the law of cosines),

αt = arccos

(
d2ij + g2t − f2t

2dijgt

)
. (8)

2These coordinates are for the proof; the robots need not compute them.

ELWIN et al.: DISTRIBUTED VORONOI NEIGHBOR IDENTIFICATION FROM INTER-ROBOT DISTANCES 5

Fig. 5. Temporary coordinate systems for the possible locations of angle αt
relative to triangle {i, j, t}. Point pi = (0, 0) and point pj = (0, dij).

We write the coordinates for points pk and pl in terms of:

ξ(t, z) =

{
(zsxt, dij − syt) if dit ≤ djt
(zsxt, syt) otherwise

, (9)

where sxt = gt sin(αt), syt = gt cos(αt) and z ∈ {−1, 1}.
The parameter z determines the side of Lij the point is on.

Fix pk by letting pk = ξ(k, 1). We then let

pl =

{
ξ(l,−1) if ‖ξ(l,−1)− pk‖ = dkl

ξ(l, 1) if ‖ξ(l, 1)− pk‖ = dkl.
(10)

Thus, pl is assigned coordinates consistent with the distance
between robots k and l. If pl = ξ(l,−1), robots k and l are on
opposite sides of Lij ; otherwise they are on the same side. Let
Ψ = (‖ξ(l,−1)−pk‖2−d2kl)2− (‖ξ(l, 1)−pk‖2−d2kl)2. The
condition Ψ < 0 determines which branch of Equation (10) is
closer to being satisfied. We use this condition because with
inexact distances neither equality condition in Equation (10)
strictly holds. When Ψ < 0, pl = ξ(l,−1) and robots i and j
are on opposite sides of Lij . Substituting Equation (9) into Ψ
shows that Ψ < 0 and Φ < d2ij are equivalent, where

Φ =

{
s2xl + s2xk + (syl − syk)2 if T

s2xl + s2xk + (syl − syk − dij)2 otherwise.
(11)

Calculating sxl, syl, sxk and syk in terms of inter-robot dis-
tances and substituting into Equation (11) shows that Φ < d2ij
is logically equivalent to Sijkl < 0.

B. Voronoi Identification Algorithm

The results of Section III-A help us develop a Voronoi
identification algorithm and prove its correctness. The sets
I ⊂ I and J ⊂ I are sets of robots and dij is the distance
between robots i and j. The algorithm depends on some basic
functions whose implementations we assume are correct:

CLOSEST-ROBOT(i, I): The robot j ∈ I that minimizes dij .
MIN-RADIUS(i, j , I): The robot k ∈ I that minimizes

r(dij , djk, dik).
MIN-SIGNED-RADIUS(i, j , I): The robot k ∈ I that mini-

mizes r̂(dik, djk, dij)
IN-HALF-PLANE(i, j , k, l): TRUE if l ∈ H(i, j, k), otherwise

FALSE. Implemented in terms of Theorem 3.
ALL-IN-HALF-PLANE(i, j , k, I): The set I ∩H(i, j, k): all

robots l ∈ I with IN-HALF-PLANE(i, j , k, l) = TRUE.
The above functions are defined using mathematical sets,

not data structures such as arrays. Data structure choice has
practical implications but does not affect our proofs.

When robots i, j, and k are mutual Voronoi neighbors,
NEXT-NEIGHBOR(i, j , k, I) returns either a mutual Voronoi
neighbor of robots i and j other than k, if it exists in I ,

Algorithm 1 Next neighbor implementation
Require: Robots i, j, and k are mutual Voronoi neighbors
Result: A Voronoi neighbor of i and j, or δ if none exists

1: function NEXT-NEIGHBOR(i, j, k, I)
2: J ← ALL-IN-HALF-PLANE(i, j, k, I)
3: if J = ∅ then
4: return δ
5: else
6: return MIN-SIGNED-RADIUS(i, j, J)

or δ 6∈ I, indicating non-existence. The routine implements
Lemma 12 (see Algorithm 1). Theorem 4 proves it is correct.

Theorem 4. For all mutual Voronoi neighbors {i, j, k} and
sets I ⊂ I, let ν = NEXT-NEIGHBOR(i, j , k, I). Let robot
l ∈ I , l 6= k be a Voronoi neighbor of robots i and j, if such
an l exists. The following statements hold:

1) If l exists then ν = l.
2) If ν 6= δ, then l exists.
3) If and only if ν = δ then l does not exist.

Proof. We now prove each condition.
1) If l exists then, by its definition, Theorem 2 implies

l = arg min
l∈H(i,j,k)

r̂(dil, djl, dij). (12)

Therefore l ∈ H(i, j, k), so l ∈ I ∩ H(i, j, k). Within
NEXT-NEIGHBOR, J = ALL-IN-HALF-PLANE(i, j , k, I) =
I∩H(i, j, k), so l ∈ J . Thus ν = MIN-SIGNED-RADIUS(i,
j , J) = arg minl∈J r̂(dil, djl, dij). Since l ∈ J , l satisfies
Equation (12), and J ⊂ H(i, j, k), ν = l.

2) If ν 6= δ, then ν = MIN-SIGNED-RADIUS(i, j , J) and
J 6= ∅. Then J = ALL-IN-HALF-PLANE(i, j , k, I) = I ∩
H(i, j, k), so H(i, j, k) 6= ∅. By Lemma 12, l exists.

3) If ν = δ, J = ∅. Since J = I ∩ H(i, j, k), and l ∈ I ,
l 6∈ H(i, j, k). By Lemma 12, an l 6= k cannot exist.

4) If l does not exist, by Lemma 12, H(i, j, k) = ∅.
Therefore J = ∅ and ν = δ.

The function FIND-VORONOI(i, j , k, W , I), listed in Al-
gorithm 2, finds some Voronoi neighbors of i given mutual
Voronoi neighbors {i, j, k}, the confirmed Voronoi neighbors
W , and the potential Voronoi neighbors I . The arguments to
FIND-VORONOI(i, j , k, W , I) must meet some conditions:

Condition 1. For FIND-VORONOI(i, j, k,W, I):
W ∩ I = ∅ and Vi ⊆ (W ∪ I) ⊆ Ii.

Condition 2. For FIND-VORONOI(i, j, k,W, I): All elements
of W lie on Di, a subpath of Delaunay path class Di, with
first and second elements [Di]1 = j and [Di]2 = k.

When FIND-VORONOI(i, j, k,W, I) satisfies Condition 2,
W ⊂ Vi, j ∈ W , k ∈ W , {i, j, k} are mutual Voronoi
neighbors, and i 6∈ W . Essentially, FIND-VORONOI finds
Voronoi neighbors along the Delaunay path until it either
determines that the path is a cycle or it reaches an endpoint.

Theorem 5. Assume Conditions 1 and 2 hold for (X,Y, o) =
FIND-VORONOI(i, j, k,W, I). Let Dijk be the left subpath of
Delaunay path class Di, from vertex pair (j, k). Then

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

Algorithm 2 Find some Voronoi neighbors
Require: Conditions 1 and 2 hold.
Result: A triple (X,Y, o), where
X ⊂ Vi contains the Voronoi neighbors found,
Y ⊂ I holds the elements of I that are not in X ,
o = Hull if pi is on CH(P) and o = Interior otherwise.
function FIND-VORONOI(i, j, k, W , I)

x← NEXT-NEIGHBOR(i, j, k, W ∪ I)
if x ∈W then

return (W , I , Interior)
else if x = δ then

return (W , I , Hull)
else if x ∈ I then

return FIND-VORONOI(i, x, j, W ∪ {x}, I \ x)

1) Conditions 1 and 2 hold for FIND-VORONOI(i, j, k,X, Y)
2) X = Dijk ∪W .
3) If and only if robot i lies on CH(P) then o = Hull.
4) If o = Interior then X = Vi.

Proof. By Theorem 4 and Condition 1, the IF in FIND-
VORONOI covers all possible x values. We induct on I .

Base: I = ∅ so x 6∈ I , and there are two cases.
If x ∈ W , by Theorem 4, x 6= k and {i, j, x} are mutual

Voronoi neighbors. Therefore, by Lemma 8, Di contains edge
{j, x}. Under Condition 2, [Di]1 = j, [Di]2 = k and x ∈ Di:
to contain edge {j, x}, the last element of Di must be j, so
Di is a cycle. By Lemma 10, Di = Vi, so, by Condition 2,
W = Vi. Since X = W and Y = I , Statements 1, 2 and 4
hold. This case is the only one with o = Interior and, by
Lemma 9, i is not on CH(P); therefore, Statement 3 holds.

If x = δ, by Theorem 4, i and j have no mutual Voronoi
neighbor other than k; therefore, the only Voronoi neighbor of
j in Di is k. By definition, [Dijk]1 = j and [Dijk]2 6= k. By
Condition 2, [Di]1 = j; therefore [Dijk]1 = [Di]1. However,
because k is the only Voronoi neighbor of j contained in Di,
Dijk = {[Di]1}, so Dijk ⊂ W ; therefore, because X = W ,
Statement 2 holds. Also, because Y = I , Statement 1 holds.
In this case, the only one with o = Hull, Lemma 12 implies
H(i, j, k) = ∅; thus, i is on CH(P) and Statement 3 holds.
Statement 4 holds because o 6= Interior.

Inductive: Given the inductive hypothesis that the Theorem
is true for all FIND-VORONOI(i, j, k,W, I \ y) invocations
satisfying Conditions 1 and 2 and for all y ∈ I , we must show
that FIND-VORONOI(i, j, k,W, I) is also true. Within FIND-
VORONOI, proving the cases when x ∈W and x = δ requires
reasoning similar to that of the base case. When x ∈ I we
have (X,Y, o) = FIND-VORONOI(i, x, j,W ∪ {x}, I \ x) and
apply the inductive hypothesis to complete the proof. (It can
be verified that the arguments to this recursive FIND-VORONOI
call satisfy Conditions 1 and 2).

Algorithm 3 lists VORONOI-NEIGHBORS, which finds all
the Voronoi neighbors of i. Figure 6 depicts its operation and
Theorem 6 proves its correctness.

Theorem 6. Let (X,Y, o) = VORONOI-NEIGHBORS(i, I),
with Vi ⊆ I . Then the following statements are true:

Algorithm 3 Find all the Voronoi neighbors of robot i
Require: Vi ⊆ I ⊆ Ii
Result: A triple (X,Y, o) where
X = Vi, the Voronoi neighbors of robot i,
Y ⊂ I , the elements in I that are not in Vi,
o = Hull if pi is on CH(P) and o = Interior otherwise.
function VORONOI-NEIGHBORS(i, I)

j ← CLOSEST-ROBOT(i, I)
I1 ← I \ j
k ← MIN-RADIUS(i, j, I1)
I2 ← I1 \ k
(X1, Y1, o1)← FIND-VORONOI(i, j, k, {j, k}, I2)
if o1 = Hull then

return FIND-VORONOI(i, k, j, X1, Y1)
else if o1 = Interior then

return (X1, Y1, o1)

Fig. 6. Algorithm 3. Both: Robot i identifies neighbors in the order indicated
by the robot identifiers. It uses CLOSEST-ROBOT to find (1), MIN-RADIUS
to find (2) and repeatedly uses NEXT-NEIGHBOR to find Voronoi neighbors
along the Delaunay path (gray). Left: The operation of VORONOI-NEIGHBORS
when robot i is not on CH(P). The Delaunay path is a cycle, so when NEXT-
NEIGHBOR encounters the previously identified neighbor (2), it has identified
all Voronoi neighbors. Right: The operation of VORONOI-NEIGHBORS when
the robot is on CH(P). When NEXT-NEIGHBOR finds an end of the Delaunay
path (4), the search proceeds in the other direction (starting from 2) until
encountering the other end of the path (5).

1) X = Vi.
2) o = HULL if and only if robot i lies on CH(P).

Proof. By Lemma 11 and Theorem 1, robots i, j and k are
mutual Voronoi neighbors. Conditions 1 and 2 hold for FIND-
VORONOI(i, j, k, {j, k}, I2). Applying Theorem 5 shows there
are exactly two cases for o1:
o1 = Interior: Robot i is not on CH(P) and X = X1 = Vi.
o1 = Hull: Robot i lies in CH(P) and X1 = Dijk ∪ {k}.

Then, (X,Y, o) = FIND-VORONOI(i, k, j,X1, Y1), which
satisfies Conditions 1 and 2. We can then apply Theorem 5
to reveal that X = Dikj ∪Dijk = Vi and o = HULL.

In both cases above, X = Vi, which proves Statement 1.
Analysis shows that o = Hull when robot i is on CH(P)
and that o = Interior otherwise, proving Statement 2.

IV. ANALYSIS

A. Computational Complexity
Function VORONOI-NEIGHBORS calls NEXT-NEIGHBOR

O(|Vi|) times, where |Vi| is the cardinality of the Voronoi
neighbor set Vi. The function NEXT-NEIGHBOR performs
O(Ni) operations, where Ni is the number of robot i’s de-
tection neighbors. Thus, VORONOI-NEIGHBORS is O(|Vi|Ni).
The average |Vi| per robot is at most six [7]; effectively, |Vi|
is constant and VORONOI-NEIGHBORS is O(Ni).

The distributed Voronoi algorithm of [8] is also O(Ni).3

Unlike VORONOI-NEIGHBORS, however, the algorithm of [8]

3It is O(1) if the communication neighbors are already sorted by distance.

ELWIN et al.: DISTRIBUTED VORONOI NEIGHBOR IDENTIFICATION FROM INTER-ROBOT DISTANCES 7

requires the robots to know their absolute positions. Thus,
when only inter-robot distances are available, a localization
method (e.g., [11], [12], [14], [15]) must first be performed.
Solving this problem, however, generally dominates compu-
tation time because embedding the detection graph G in R2

is NP-hard [16]. By purposefully avoiding localizing some
agents, localization can be solved in polynomial time with
respect to the number of detection neighbors [15].

Rather than localizing and then finding Voronoi neigh-
bors, VORONOI-NEIGHBORS can aid localization: for example,
the algorithm of [15] is more efficient if it operates on
the (relatively few) Voronoi neighbors rather than on all
of the detection neighbors. Also, by modifying VORONOI-
NEIGHBORS to track the sequence of the Voronoi neighbors
along the Delaunay path, these neighbors can be localized in
O(|Vi|) time, with each robot using the Delaunay triangles to
compute local coordinates. By transmitting these coordinates,
in sequence, the robots can find the translation, rotation, and
flip between neighboring coordinate systems. Although more
efficient, noise may make this method less accurate than others
because it does not use all available measurements.

B. Limited Detection

To identify all of its Voronoi neighbors, robot i must detect
(communicate with and sense) them. That is, Vi must be
a subset of robot i’s detection neighbors. Additionally, two
robots that are opposite a shared Delaunay edge (e.g., i and
l for Delaunay triangles {i, j, k} and {l, j, k}) must measure
each other (but need not communicate). These communication
and measurement requirements are more restrictive than those
necessary for localization (see, e.g., [14]); however, they also
provide a stronger guarantee. They ensure that every robot
can localize its own Voronoi neighbors. For radius-limited
detection graphs, where every robot detects every other robot
within a radius R, it is sufficient for R to be at least twice the
length of the longest Delaunay edge. With high enough robot
density, this condition is satisfied [7].

C. Noise

Noisy measurements reduce the accuracy of all Voronoi
neighbor identification algorithms. Noise can also cause asym-
metry in the Voronoi neighbor relation: robot i may identify
robot j as a Voronoi neighbor without robot j viewing robot
i as a neighbor. To repair this inconsistency we introduce an
extra step; every robot i sends Vi to its detection neighbors.
When robot j receives Vi it checks if j ∈ Vi and if so adds i
to Vj . After this consistency step, j ∈ Vi if and only if i ∈ Vj .

We now use the concept of distortion (introduced in Sec-
tion II-D) to quantify the error in the algorithm’s inputs (i.e.,
the measurements) and outputs (i.e., the computed Delaunay
graph). Using distortion as a distance between graphs is well-
established [13]. Let G be the graph with the same topology
as the detection graph G, but with edge weights equal to the
actual Euclidean distance dij between robots (i.e., an edge
with weight dij in G exists between robots i and j if they
detect each other). We use the detection distortion δm between

the metric spaces corresponding to G and G to quantify the
overall measurement error introduced by noise.4

To gain intuition, suppose the only edge in G with a possibly
inaccurate measurement is between robots i and j. If edge
eij = dij then the measurement has no noise, G = G, and
δm = 1 (note: δm ≥ 1 by definition). If eij < dij then δm =
dij
eij

and if eij > dij then δm =
eij
dij

, so whether the sensed
distance is longer or shorter than the actual distance, δm > 1.
Given fixed measurement error eij − dij , distortion increases
with |dij |: this concept fits the idea that, for example, a 1 m
error is worse for an actual distance of 10 m than for 100 m.

The algorithm, when operating on noisy measurements,
determines the computed graph Gv . An edge with weight eij
from G exists between robots i and j in Gv if they identify
each other as Voronoi neighbors. The Delaunay distortion
δv is the distortion between the metric spaces corresponding
to the actual Delaunay graph Gv and Gv; it measures the
algorithm’s error. Suppose, for example, that robots i and j
mistakenly identify each other as Voronoi neighbors, but all
other identifications are correct. Then between robots i and
j an edge exists in Gv that does not exist in Gv . Generally,
this additional edge decreases the distance between robots i
and j in Gv relative to their distance in Gv; the farther apart
robots i and j are (based on the number of edges on the
shortest path between them), the larger this decrease and the
larger the distortion. Thus, distortion matches the intuition that
misidentifying robots close to Voronoi neighbors results in less
error than misidentifying distant robots. In Section V-B, we
analyze our results using distortions δm and δv .

V. EXPERIMENT AND SIMULATIONS

We use an experimentally validated sensor model to test
our algorithm in simulation. The simulations allow testing
many more scenarios than with experiments alone. The ex-
periment provides confidence that the simulation accurately
captures sensor noise, which is the main difference between
the theoretical and practical aspects of our algorithm.

A. Experiment

We placed two XBee radios at distances from 8.89 cm to
74.294 cm apart at intervals of 0.64 cm. We sent approxi-
mately 50 packets at each location and recorded the received
signal strength indicator (RSSI). These data are plotted in
Figure 7. This signal is highly quantized, providing only
69 distinct values [17]. Over distances between 8.89 cm to
33.04 cm, however, the data match the physical expectation
that signal power drops proportionally to the inverse square of
distance. Thus, over these distances we fit a quadratic curve
mapping RSSI signals to distances (see Figure 7).

We use the experimental data to generate simulated sensor
data. Given an actual inter-robot distance d, the model finds
the distances di and di+1 (locations where experimental data
were gathered, so di+1 − di = 0.64 cm) such that di < d <
di+1 We then randomly draw an RSSI value from the data
associated with distances di and di+1, weighted according to

4Disconnected graphs do not correspond to metric spaces with finite
metrics. We disregard the disconnected case because when the agent density
is high enough both the detection and computed graphs are connected.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

R
S

S
I (

-d
B

m
)

10 15 20 25 30

30

40

50

60

70

80

Distance (cm)
Fig. 7. RSSI signal (-dBm) vs. Distance (cm). Higher values indicate a weaker
signal. The green curve is the quadratic fit with y = −0.0141x2+1.9614x−
35.365. Each plotted point may represent several readings of the same RSSI
value at a given distance.

the distribution of the actual data at these locations and the
distance from d to di and to di+1.

B. Simulations

We ran simulations with robots uniformly randomly placed
inside a 254 cm by 254 cm domain. The robots sense distances
using simulated XBee RSSI data, communicate measurements
to their neighbors, run the VORONOI-NEIGHBORS algorithm,
and perform the consistency update. Robots more than 33 cm
apart cannot sense or communicate with each other. We tested
the algorithm for N = 200 . . . 1000 robots with 100 trials
for each N (a total of 80,000 trials). We disregard trials with
disconnected detection or computed graphs: less than 2% of
trials with more than 300 robots had a disconnected Delaunay
graph, and most of these had a disconnected detection graph.

Figure 8 plots the Delaunay distortion δv versus the de-
tection distortion δm. It indicates that the error is propor-
tional to the inaccuracy of the XBee distance measurements.
The ratio δv

δm
is bi-modal, clustered around 1 and 2, with

δv
δm

< 6.5. When δv
δm
≈ 1 most output error is from the

noisy edge weights of Gv rather than incorrect identifications;
therefore, the topology of Gv and Gv is similar and most
identifications are correct. Larger δv

δm
indicates more error:

the clustering around 2 indicates that the non-locality of
misidentified Voronoi neighbors is limited by the measurement
error: robots that are far away relative to the magnitude of
measurement inaccuracy generally do not misidentify each
other. Thus our algorithm provides reasonable estimates of
the Voronoi neighbors and degrades smoothly with respect to
errors due to XBee RSSI measurement noise.

VI. CONCLUSION

Our algorithm allows robots to determine their Voronoi
neighbors using only inter-robot distances, without placing
those neighbors in a local coordinate system. The method
results in a more efficient determination of the Voronoi neigh-
bors, compared to localizing these neighbors first, and also
can aid in more efficient localization. We demonstrate the
practicality of the algorithm using an experimentally validated
distance sensor model based on XBee RSSI data.

Fig. 8. Main: Delaunay distortion δv vs. detection distortion δm. Note that
most trials were in the lower left corner (see inset); particularly erroneous
measurements led to more detection distortion resulting in proportionally more
Delaunay distortion. Inset: A closer view: most trials cluster around δv

δm
= 1.

REFERENCES

[1] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, April 2004.

[2] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” The International Journal of
Robotics Research, vol. 28, no. 3, pp. 357–375, 2009.

[3] M. Schwager, J. Mclurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots,” in in Proceedings of
Robotics: Science and Systems, 2006.

[4] S. Martı́nez, “Distributed interpolation schemes for field estimation by
mobile sensor networks,” Control Systems Technology, IEEE Transac-
tions on, vol. 18, no. 2, pp. 491–500, March 2010.

[5] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Environmental esti-
mation with distributed finite element agents,” in 55th IEEE Conference
on Decision and Control, Dec 2016, pp. 5918–5924.

[6] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in Proceedings of the Thirtieth
International Conference on Very Large Data Bases - Volume 30, ser.
VLDB ’04. VLDB Endowment, 2004, pp. 840–851.

[7] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and D. G. Kendall, Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed.
John Wiley and Sons, 2000.

[8] M. Cao and C. Hadjicostis, “Distributed algorithms for Voronoi dia-
grams and application in ad-hoc networks,” UIUC Coordinated Science
Laboratory, Tech. Rep. UILU-ENG-03-2222,DC-210, 2003.

[9] B. A. Bash and P. J. Desnoyers, “Exact distributed Voronoi cell
computation in sensor networks,” in 2007 6th International Symposium
on Information Processing in Sensor Networks, April 2007, p. 236.

[10] W. Alsalih, K. Islam, Y. Núñez Rodrı́guez, and H. Xiao, “Distributed
Voronoi diagram computation in wireless sensor networks,” in
Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’08. New York, NY, USA:
ACM, 2008, pp. 364–364.

[11] U. A. Khan, S. Kar, and J. M. F. Moura, “Linear theory for self-
localization: Convexity, barycentric coordinates, and Cayley–Menger
determinants,” IEEE Access, vol. 3, pp. 1326–1339, 2015.

[12] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Computer Networks, vol. 51, no. 10, pp.
2529–2553, July 2007.

[13] J. Matoušek, Lectures on discrete geometry. Springer New York, 2002,
vol. 108.

[14] T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse,
B. D. O. Anderson, and P. N. Belhumeur, “Rigidity, computation, and
randomization in network localization,” in INFOCOM 2004. Twenty-
third Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, vol. 4, March 2004, pp. 2673–2684 vol.4.

[15] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed
network localization with noisy range measurements,” in Proceedings
of the 2nd International Conference on Embedded Networked Sensor
Systems. New York, NY, USA: ACM, 2004, pp. 50–61.

[16] J. B. Saxe, “Embeddability of weighted graphs in k-space is strongly
NP-hard,” in Proceedings of the 17th Allerton Conference on Commu-
nication, Control, and Computing, 1979, pp. 166–179.

[17] XBee / XBee-PRO RF Modules, v1.xEx ed., Digi International, 2009.

